
- •Contents
- •Send Us Your Comments
- •Preface
- •What's New in PL/SQL?
- •1 Overview of PL/SQL
- •Advantages of PL/SQL
- •Tight Integration with SQL
- •Support for SQL
- •Better Performance
- •Higher Productivity
- •Full Portability
- •Tight Security
- •Support for Object-Oriented Programming
- •Understanding the Main Features of PL/SQL
- •Block Structure
- •Variables and Constants
- •Processing Queries with PL/SQL
- •Declaring PL/SQL Variables
- •Control Structures
- •Writing Reusable PL/SQL Code
- •Data Abstraction
- •Error Handling
- •PL/SQL Architecture
- •In the Oracle Database Server
- •In Oracle Tools
- •2 Fundamentals of the PL/SQL Language
- •Character Set
- •Lexical Units
- •Delimiters
- •Literals
- •Comments
- •Declarations
- •Using DEFAULT
- •Using NOT NULL
- •Using the %TYPE Attribute
- •Using the %ROWTYPE Attribute
- •Restrictions on Declarations
- •PL/SQL Naming Conventions
- •Scope and Visibility of PL/SQL Identifiers
- •Assigning Values to Variables
- •Assigning Boolean Values
- •Assigning a SQL Query Result to a PL/SQL Variable
- •PL/SQL Expressions and Comparisons
- •Logical Operators
- •Boolean Expressions
- •CASE Expressions
- •Handling Null Values in Comparisons and Conditional Statements
- •Summary of PL/SQL Built-In Functions
- •3 PL/SQL Datatypes
- •PL/SQL Number Types
- •PL/SQL Character and String Types
- •PL/SQL National Character Types
- •PL/SQL LOB Types
- •PL/SQL Boolean Types
- •PL/SQL Date, Time, and Interval Types
- •Datetime and Interval Arithmetic
- •Avoiding Truncation Problems Using Date and Time Subtypes
- •Overview of PL/SQL Subtypes
- •Using Subtypes
- •Converting PL/SQL Datatypes
- •Explicit Conversion
- •Implicit Conversion
- •Choosing Between Implicit and Explicit Conversion
- •DATE Values
- •RAW and LONG RAW Values
- •4 Using PL/SQL Control Structures
- •Overview of PL/SQL Control Structures
- •Testing Conditions: IF and CASE Statements
- •Using the IF-THEN Statement
- •Using the IF-THEN-ELSE Statement
- •Using the IF-THEN-ELSIF Statement
- •Using the CASE Statement
- •Guidelines for PL/SQL Conditional Statements
- •Controlling Loop Iterations: LOOP and EXIT Statements
- •Using the LOOP Statement
- •Using the EXIT Statement
- •Using the EXIT-WHEN Statement
- •Labeling a PL/SQL Loop
- •Using the WHILE-LOOP Statement
- •Using the FOR-LOOP Statement
- •Sequential Control: GOTO and NULL Statements
- •Using the GOTO Statement
- •Using the NULL Statement
- •5 Using PL/SQL Collections and Records
- •What Is a Collection?
- •Understanding Nested Tables
- •Understanding Varrays
- •Understanding Associative Arrays (Index-By Tables)
- •How Globalization Settings Affect VARCHAR2 Keys for Associative Arrays
- •Choosing Which PL/SQL Collection Types to Use
- •Choosing Between Nested Tables and Associative Arrays
- •Choosing Between Nested Tables and Varrays
- •Defining Collection Types
- •Declaring PL/SQL Collection Variables
- •Initializing and Referencing Collections
- •Referencing Collection Elements
- •Assigning Collections
- •Comparing Collections
- •Using PL/SQL Collections with SQL Statements
- •Using PL/SQL Varrays with INSERT, UPDATE, and SELECT Statements
- •Manipulating Individual Collection Elements with SQL
- •Using Multilevel Collections
- •Using Collection Methods
- •Checking If a Collection Element Exists (EXISTS Method)
- •Counting the Elements in a Collection (COUNT Method)
- •Checking the Maximum Size of a Collection (LIMIT Method)
- •Finding the First or Last Collection Element (FIRST and LAST Methods)
- •Looping Through Collection Elements (PRIOR and NEXT Methods)
- •Increasing the Size of a Collection (EXTEND Method)
- •Decreasing the Size of a Collection (TRIM Method)
- •Deleting Collection Elements (DELETE Method)
- •Applying Methods to Collection Parameters
- •Avoiding Collection Exceptions
- •What Is a PL/SQL Record?
- •Using Records as Procedure Parameters and Function Return Values
- •Assigning Values to Records
- •Comparing Records
- •Inserting PL/SQL Records into the Database
- •Updating the Database with PL/SQL Record Values
- •Restrictions on Record Inserts/Updates
- •Querying Data into Collections of Records
- •6 Performing SQL Operations from PL/SQL
- •Overview of SQL Support in PL/SQL
- •Data Manipulation
- •Transaction Control
- •SQL Functions
- •SQL Pseudocolumns
- •SQL Operators
- •Performing DML Operations from PL/SQL (INSERT, UPDATE, and DELETE)
- •Overview of Implicit Cursor Attributes
- •Using PL/SQL Records in SQL INSERT and UPDATE Statements
- •Issuing Queries from PL/SQL
- •Selecting At Most One Row: SELECT INTO Statement
- •Selecting Multiple Rows: BULK COLLECT Clause
- •Looping Through Multiple Rows: Cursor FOR Loop
- •Performing Complicated Query Processing: Explicit Cursors
- •Querying Data with PL/SQL
- •Querying Data with PL/SQL: Implicit Cursor FOR Loop
- •Querying Data with PL/SQL: Explicit Cursor FOR Loops
- •Overview of Explicit Cursors
- •Using Subqueries
- •Using Correlated Subqueries
- •Writing Maintainable PL/SQL Queries
- •Using Cursor Attributes
- •Overview of Explicit Cursor Attributes
- •Using Cursor Variables (REF CURSORs)
- •What Are Cursor Variables (REF CURSORs)?
- •Why Use Cursor Variables?
- •Declaring REF CURSOR Types and Cursor Variables
- •Controlling Cursor Variables: OPEN-FOR, FETCH, and CLOSE
- •Avoiding Errors with Cursor Variables
- •Restrictions on Cursor Variables
- •Using Cursor Expressions
- •Restrictions on Cursor Expressions
- •Example of Cursor Expressions
- •Constructing REF CURSORs with Cursor Subqueries
- •Overview of Transaction Processing in PL/SQL
- •Using COMMIT, SAVEPOINT, and ROLLBACK in PL/SQL
- •How Oracle Does Implicit Rollbacks
- •Ending Transactions
- •Setting Transaction Properties with SET TRANSACTION
- •Overriding Default Locking
- •Doing Independent Units of Work with Autonomous Transactions
- •Advantages of Autonomous Transactions
- •Controlling Autonomous Transactions
- •Using Autonomous Triggers
- •Calling Autonomous Functions from SQL
- •7 Performing SQL Operations with Native Dynamic SQL
- •What Is Dynamic SQL?
- •Why Use Dynamic SQL?
- •Using the EXECUTE IMMEDIATE Statement
- •Specifying Parameter Modes for Bind Variables in Dynamic SQL Strings
- •Building a Dynamic Query with Dynamic SQL
- •Examples of Dynamic SQL for Records, Objects, and Collections
- •Using Bulk Dynamic SQL
- •Using Dynamic SQL with Bulk SQL
- •Examples of Dynamic Bulk Binds
- •Guidelines for Dynamic SQL
- •When to Use or Omit the Semicolon with Dynamic SQL
- •Improving Performance of Dynamic SQL with Bind Variables
- •Passing Schema Object Names As Parameters
- •Using Duplicate Placeholders with Dynamic SQL
- •Using Cursor Attributes with Dynamic SQL
- •Passing Nulls to Dynamic SQL
- •Using Database Links with Dynamic SQL
- •Using Invoker Rights with Dynamic SQL
- •Using Pragma RESTRICT_REFERENCES with Dynamic SQL
- •Avoiding Deadlocks with Dynamic SQL
- •Backward Compatibility of the USING Clause
- •8 Using PL/SQL Subprograms
- •What Are Subprograms?
- •Advantages of PL/SQL Subprograms
- •Understanding PL/SQL Procedures
- •Understanding PL/SQL Functions
- •Using the RETURN Statement
- •Declaring Nested PL/SQL Subprograms
- •Passing Parameters to PL/SQL Subprograms
- •Actual Versus Formal Subprogram Parameters
- •Using Positional, Named, or Mixed Notation for Subprogram Parameters
- •Specifying Subprogram Parameter Modes
- •Using Default Values for Subprogram Parameters
- •Overloading Subprogram Names
- •Guidelines for Overloading with Numeric Types
- •Restrictions on Overloading
- •How Subprogram Calls Are Resolved
- •How Overloading Works with Inheritance
- •Using Invoker's Rights Versus Definer's Rights (AUTHID Clause)
- •Advantages of Invoker's Rights
- •Specifying the Privileges for a Subprogram with the AUTHID Clause
- •Who Is the Current User During Subprogram Execution?
- •How External References Are Resolved in Invoker's Rights Subprograms
- •Overriding Default Name Resolution in Invoker's Rights Subprograms
- •Granting Privileges on Invoker's Rights Subprograms
- •Using Roles with Invoker's Rights Subprograms
- •Using Views and Database Triggers with Invoker's Rights Subprograms
- •Using Database Links with Invoker's Rights Subprograms
- •Using Object Types with Invoker's Rights Subprograms
- •Using Recursion with PL/SQL
- •What Is a Recursive Subprogram?
- •Calling External Subprograms
- •Creating Dynamic Web Pages with PL/SQL Server Pages
- •Controlling Side Effects of PL/SQL Subprograms
- •Understanding Subprogram Parameter Aliasing
- •9 Using PL/SQL Packages
- •What Is a PL/SQL Package?
- •What Goes In a PL/SQL Package?
- •Example of a PL/SQL Package
- •Advantages of PL/SQL Packages
- •Understanding The Package Specification
- •Referencing Package Contents
- •Understanding The Package Body
- •Some Examples of Package Features
- •Private Versus Public Items in Packages
- •Overloading Packaged Subprograms
- •How Package STANDARD Defines the PL/SQL Environment
- •About the DBMS_ALERT Package
- •About the DBMS_OUTPUT Package
- •About the DBMS_PIPE Package
- •About the UTL_FILE Package
- •About the UTL_HTTP Package
- •Guidelines for Writing Packages
- •Separating Cursor Specs and Bodies with Packages
- •10 Handling PL/SQL Errors
- •Overview of PL/SQL Runtime Error Handling
- •Guidelines for Avoiding and Handling PL/SQL Errors and Exceptions
- •Advantages of PL/SQL Exceptions
- •Summary of Predefined PL/SQL Exceptions
- •Defining Your Own PL/SQL Exceptions
- •Declaring PL/SQL Exceptions
- •Scope Rules for PL/SQL Exceptions
- •Associating a PL/SQL Exception with a Number: Pragma EXCEPTION_INIT
- •How PL/SQL Exceptions Are Raised
- •Raising Exceptions with the RAISE Statement
- •How PL/SQL Exceptions Propagate
- •Reraising a PL/SQL Exception
- •Handling Raised PL/SQL Exceptions
- •Handling Exceptions Raised in Declarations
- •Handling Exceptions Raised in Handlers
- •Branching to or from an Exception Handler
- •Retrieving the Error Code and Error Message: SQLCODE and SQLERRM
- •Catching Unhandled Exceptions
- •Tips for Handling PL/SQL Errors
- •Continuing after an Exception Is Raised
- •Retrying a Transaction
- •Using Locator Variables to Identify Exception Locations
- •Overview of PL/SQL Compile-Time Warnings
- •PL/SQL Warning Categories
- •Controlling PL/SQL Warning Messages
- •Using the DBMS_WARNING Package
- •11 Tuning PL/SQL Applications for Performance
- •How PL/SQL Optimizes Your Programs
- •When to Tune PL/SQL Code
- •Guidelines for Avoiding PL/SQL Performance Problems
- •Avoiding CPU Overhead in PL/SQL Code
- •Avoiding Memory Overhead in PL/SQL Code
- •Profiling and Tracing PL/SQL Programs
- •Using The Trace API: Package DBMS_TRACE
- •Reducing Loop Overhead for DML Statements and Queries (FORALL, BULK COLLECT)
- •Using the FORALL Statement
- •Retrieving Query Results into Collections with the BULK COLLECT Clause
- •Writing Computation-Intensive Programs in PL/SQL
- •Tuning Dynamic SQL with EXECUTE IMMEDIATE and Cursor Variables
- •Tuning PL/SQL Procedure Calls with the NOCOPY Compiler Hint
- •Restrictions on NOCOPY
- •Compiling PL/SQL Code for Native Execution
- •Setting Up Transformation Pipelines with Table Functions
- •Overview of Table Functions
- •Using Pipelined Table Functions for Transformations
- •Writing a Pipelined Table Function
- •Returning Results from Table Functions
- •Pipelining Data Between PL/SQL Table Functions
- •Querying Table Functions
- •Optimizing Multiple Calls to Table Functions
- •Fetching from the Results of Table Functions
- •Passing Data with Cursor Variables
- •Performing DML Operations Inside Table Functions
- •Performing DML Operations on Table Functions
- •Handling Exceptions in Table Functions
- •12 Using PL/SQL Object Types
- •Overview of PL/SQL Object Types
- •What Is an Object Type?
- •Why Use Object Types?
- •Structure of an Object Type
- •Components of an Object Type
- •What Languages can I Use for Methods of Object Types?
- •How Object Types Handle the SELF Parameter
- •Overloading
- •Changing Attributes and Methods of an Existing Object Type (Type Evolution)
- •Defining Object Types
- •Overview of PL/SQL Type Inheritance
- •Declaring and Initializing Objects
- •Declaring Objects
- •Initializing Objects
- •How PL/SQL Treats Uninitialized Objects
- •Accessing Object Attributes
- •Defining Object Constructors
- •Calling Object Constructors
- •Calling Object Methods
- •Sharing Objects through the REF Modifier
- •Manipulating Objects through SQL
- •Selecting Objects
- •Inserting Objects
- •Updating Objects
- •Deleting Objects
- •13 PL/SQL Language Elements
- •Assignment Statement
- •AUTONOMOUS_TRANSACTION Pragma
- •Blocks
- •CASE Statement
- •CLOSE Statement
- •Collection Methods
- •Collections
- •Comments
- •COMMIT Statement
- •Constants and Variables
- •Cursor Attributes
- •Cursor Variables
- •Cursors
- •DELETE Statement
- •EXCEPTION_INIT Pragma
- •Exceptions
- •EXECUTE IMMEDIATE Statement
- •EXIT Statement
- •Expressions
- •FETCH Statement
- •FORALL Statement
- •Functions
- •GOTO Statement
- •IF Statement
- •INSERT Statement
- •Literals
- •LOCK TABLE Statement
- •LOOP Statements
- •MERGE Statement
- •NULL Statement
- •Object Types
- •OPEN Statement
- •OPEN-FOR Statement
- •OPEN-FOR-USING Statement
- •Packages
- •Procedures
- •RAISE Statement
- •Records
- •RESTRICT_REFERENCES Pragma
- •RETURN Statement
- •ROLLBACK Statement
- •%ROWTYPE Attribute
- •SAVEPOINT Statement
- •SCN_TO_TIMESTAMP Function
- •SELECT INTO Statement
- •SERIALLY_REUSABLE Pragma
- •SET TRANSACTION Statement
- •SQL Cursor
- •SQLCODE Function
- •SQLERRM Function
- •TIMESTAMP_TO_SCN Function
- •%TYPE Attribute
- •UPDATE Statement
- •Where to Find PL/SQL Sample Programs
- •Exercises for the Reader
- •Assigning Character Values
- •Comparing Character Values
- •Inserting Character Values
- •Selecting Character Values
- •Advantages of Wrapping PL/SQL Procedures
- •Running the PL/SQL Wrap Utility
- •Input and Output Files for the PL/SQL Wrap Utility
- •Limitations of the PL/SQL Wrap Utility
- •What Is Name Resolution?
- •Examples of Qualified Names and Dot Notation
- •Differences in Name Resolution Between SQL and PL/SQL
- •Understanding Capture
- •Inner Capture
- •Same-Scope Capture
- •Outer Capture
- •Avoiding Inner Capture in DML Statements
- •Qualifying References to Object Attributes and Methods
- •Calling Parameterless Subprograms and Methods
- •Name Resolution for SQL Versus PL/SQL
- •When Should I Use Bind Variables with PL/SQL?
- •When Do I Use or Omit the Semicolon with Dynamic SQL?
- •How Can I Use Regular Expressions with PL/SQL?
- •How Do I Continue After a PL/SQL Exception?
- •How Do I Pass a Result Set from PL/SQL to Java or Visual Basic (VB)?
- •How Do I Specify Different Kinds of Names with PL/SQL's Dot Notation?
- •What Can I Do with Objects and Object Types in PL/SQL?
- •How Do I Create a PL/SQL Procedure?
- •How Do I Input or Output Data with PL/SQL?
- •How Do I Perform a Case-Insensitive Query?
- •Index
- •Symbols

Controlling Loop Iterations: LOOP and EXIT Statements
ELSE
overdrawn := FALSE; END IF;
...
IF overdrawn = TRUE THEN RAISE insufficient_funds;
END IF;
The value of a Boolean expression can be assigned directly to a Boolean variable. You can replace the first IF statement with a simple assignment:
overdrawn := new_balance < minimum_balance;
A Boolean variable is itself either true or false. You can simplify the condition in the second IF statement:
IF overdrawn THEN ...
When possible, use the ELSIF clause instead of nested IF statements. Your code will be easier to read and understand. Compare the following IF statements:
IF condition1 THEN |
| |
IF condition1 THEN |
statement1; |
| |
statement1; |
ELSE |
| |
ELSIF condition2 THEN |
IF condition2 THEN |
| |
statement2; |
statement2; |
| |
ELSIF condition3 THEN |
ELSE |
| |
statement3; |
IF condition3 THEN |
| |
END IF; |
statement3; |
| |
|
END IF; |
| |
|
END IF; |
| |
|
END IF; |
| |
|
These statements are logically equivalent, but the second statement makes the logic clearer.
To compare a single expression to multiple values, you can simplify the logic by using a single CASE statement instead of an IF with several ELSIF clauses.
Controlling Loop Iterations: LOOP and EXIT Statements
LOOP statements execute a sequence of statements multiple times. There are three forms of LOOP statements: LOOP, WHILE-LOOP, and FOR-LOOP.
Using the LOOP Statement
The simplest form of LOOP statement is the basic loop, which encloses a sequence of statements between the keywords LOOP and END LOOP, as follows:
LOOP sequence_of_statements
END LOOP;
With each iteration of the loop, the sequence of statements is executed, then control resumes at the top of the loop. You use an EXIT statement to stop looping and prevent an infinite loop. You can place one or more EXIT statements anywhere inside a loop, but not outside a loop. There are two forms of EXIT statements: EXIT and
EXIT-WHEN.
4-6 PL/SQL User's Guide and Reference

Controlling Loop Iterations: LOOP and EXIT Statements
Using the EXIT Statement
The EXIT statement forces a loop to complete unconditionally. When an EXIT statement is encountered, the loop completes immediately and control passes to the next statement:
LOOP
IF credit_rating < 3 THEN
EXIT; -- exit loop immediately END IF;
END LOOP;
-- control resumes here
Remember, the EXIT statement must be placed inside a loop. To complete a PL/SQL block before its normal end is reached, you can use the RETURN statement. For more information, see "Using the RETURN Statement" on page 8-4.
Using the EXIT-WHEN Statement
The EXIT-WHEN statement lets a loop complete conditionally. When the EXIT statement is encountered, the condition in the WHEN clause is evaluated. If the condition is true, the loop completes and control passes to the next statement after the loop:
LOOP
FETCH c1 INTO ...
EXIT WHEN c1%NOTFOUND; -- exit loop if condition is true
...
END LOOP; CLOSE c1;
Until the condition is true, the loop cannot complete. A statement inside the loop must change the value of the condition. In the previous example, if the FETCH statement returns a row, the condition is false. When the FETCH statement fails to return a row, the condition is true, the loop completes, and control passes to the CLOSE statement.
The EXIT-WHEN statement replaces a simple IF statement. For example, compare the following statements:
IF count > 100 THEN |
| |
EXIT WHEN count > 100; |
EXIT; |
| |
|
END IF; |
| |
|
These statements are logically equivalent, but the EXIT-WHEN statement is easier to read and understand.
Labeling a PL/SQL Loop
Like PL/SQL blocks, loops can be labeled. The label, an undeclared identifier enclosed by double angle brackets, must appear at the beginning of the LOOP statement, as follows:
<<label_name>> LOOP
sequence_of_statements END LOOP;
Optionally, the label name can also appear at the end of the LOOP statement, as the following example shows:
<<my_loop>>
Using PL/SQL Control Structures 4-7

Controlling Loop Iterations: LOOP and EXIT Statements
LOOP
...
END LOOP my_loop;
When you nest labeled loops, use ending label names to improve readability.
With either form of EXIT statement, you can complete not only the current loop, but any enclosing loop. Simply label the enclosing loop that you want to complete. Then, use the label in an EXIT statement, as follows:
<<outer>> LOOP
...
LOOP
...
EXIT outer WHEN ... -- exit both loops END LOOP;
...
END LOOP outer;
Every enclosing loop up to and including the labeled loop is exited.
Using the WHILE-LOOP Statement
The WHILE-LOOP statement executes the statements in the loop body as long as a condition is true:
WHILE condition LOOP sequence_of_statements
END LOOP;
Before each iteration of the loop, the condition is evaluated. If it is true, the sequence of statements is executed, then control resumes at the top of the loop. If it is false or null, the loop is skipped and control passes to the next statement:
WHILE total <= 25000 LOOP
SELECT sal INTO salary FROM emp WHERE ...
total := total + salary; END LOOP;
The number of iterations depends on the condition and is unknown until the loop completes. The condition is tested at the top of the loop, so the sequence might execute zero times. In the last example, if the initial value of total is larger than 25000, the condition is false and the loop is skipped.
Some languages have a LOOP UNTIL or REPEAT UNTIL structure, which tests the condition at the bottom of the loop instead of at the top, so that the sequence of statements is executed at least once. The equivalent in PL/SQL would be:
LOOP sequence_of_statements
EXIT WHEN boolean_expression; END LOOP;
To ensure that a WHILE loop executes at least once, use an initialized Boolean variable in the condition, as follows:
done := FALSE; WHILE NOT done LOOP
sequence_of_statements done := boolean_expression;
4-8 PL/SQL User's Guide and Reference

Controlling Loop Iterations: LOOP and EXIT Statements
END LOOP;
A statement inside the loop must assign a new value to the Boolean variable to avoid an infinite loop.
Using the FOR-LOOP Statement
Simple FOR loops iterate over a specified range of integers. The number of iterations is known before the loop is entered. A double dot (..) serves as the range operator:
FOR counter IN [REVERSE] lower_bound..higher_bound LOOP sequence_of_statements
END LOOP;
The range is evaluated when the FOR loop is first entered and is never re-evaluated.
As the next example shows, the sequence of statements is executed once for each integer in the range. After each iteration, the loop counter is incremented.
FOR i IN 1..3 LOOP -- assign the values 1,2,3 to i sequence_of_statements -- executes three times
END LOOP;
If the lower bound equals the higher bound, the loop body is executed once:
FOR i IN 3..3 LOOP -- assign the value 3 to i sequence_of_statements -- executes one time
END LOOP;
By default, iteration proceeds upward from the lower bound to the higher bound. If you use the keyword REVERSE, iteration proceeds downward from the higher bound to the lower bound. After each iteration, the loop counter is decremented. You still write the range bounds in ascending (not descending) order.
FOR i IN REVERSE 1..3 LOOP -- assign the values 3,2,1 to i sequence_of_statements -- executes three times
END LOOP;
Inside a FOR loop, the counter can be read but cannot be changed:
FOR ctr IN 1..10 LOOP IF NOT finished THEN
INSERT INTO ... VALUES (ctr, ...); -- OK factor := ctr * 2; -- OK
ELSE
ctr := 10; -- not allowed END IF;
END LOOP;
Tip: A useful variation of the FOR loop uses a SQL query instead of a range of integers. This technique lets you run a query and process all the rows of the result set with straightforward syntax. For details, see "Querying Data with PL/SQL: Implicit Cursor FOR Loop" on page 6-9.
How PL/SQL Loops Iterate
The bounds of a loop range can be literals, variables, or expressions but must evaluate to numbers. Otherwise, PL/SQL raises the predefined exception VALUE_ERROR. The lower bound need not be 1, but the loop counter increment or decrement must be 1.
j IN -5..5
k IN REVERSE first..last
Using PL/SQL Control Structures 4-9

Controlling Loop Iterations: LOOP and EXIT Statements
step IN 0..TRUNC(high/low) * 2
Internally, PL/SQL assigns the values of the bounds to temporary PLS_INTEGER variables, and, if necessary, rounds the values to the nearest integer. The magnitude range of a PLS_INTEGER is -2**31 .. 2**31. If a bound evaluates to a number outside that range, you get a numeric overflow error when PL/SQL attempts the assignment.
Some languages provide a STEP clause, which lets you specify a different increment (5 instead of 1 for example). PL/SQL has no such structure, but you can easily build one. Inside the FOR loop, simply multiply each reference to the loop counter by the new increment. In the following example, you assign today's date to elements 5, 10, and 15 of an index-by table:
DECLARE
TYPE DateList IS TABLE OF DATE INDEX BY BINARY_INTEGER; dates DateList;
k CONSTANT INTEGER := 5; -- set new increment BEGIN
FOR j IN 1..3 LOOP
dates(j*k) := SYSDATE; -- multiply loop counter by increment END LOOP;
...
END;
Dynamic Ranges for Loop Bounds
PL/SQL lets you specify the loop range at run time by using variables for bounds:
SELECT COUNT(empno) INTO emp_count FROM emp; FOR i IN 1..emp_count LOOP
...
END LOOP;
If the lower bound of a loop range evaluates to a larger integer than the upper bound, the loop body is not executed and control passes to the next statement:
-- limit becomes 1 FOR i IN 2..limit LOOP
sequence_of_statements -- executes zero times END LOOP;
-- control passes here
Scope of the Loop Counter Variable
The loop counter is defined only within the loop. You cannot reference that variable name outside the loop. After the loop exits, the loop counter is undefined:
FOR ctr IN 1..10 LOOP
...
END LOOP;
sum := ctr - 1; -- not allowed
You do not need to declare the loop counter because it is implicitly declared as a local variable of type INTEGER. It is safest not to use the name of an existing variable, because the local declaration hides any global declaration:
DECLARE
ctr INTEGER := 3; BEGIN
...
FOR ctr IN 1..25 LOOP
...
4-10 PL/SQL User's Guide and Reference

Controlling Loop Iterations: LOOP and EXIT Statements
IF ctr > 10 THEN ... -- Refers to loop counter END LOOP;
-- After the loop, ctr refers to the original variable with value 3. END;
To reference the global variable in this example, you must use a label and dot notation, as follows:
<<main>> DECLARE
ctr INTEGER;
...
BEGIN
...
FOR ctr IN 1..25 LOOP
...
IF main.ctr > 10 THEN -- refers to global variable
...
END IF; END LOOP;
END main;
The same scope rules apply to nested FOR loops. Consider the example below. Both loop counters have the same name. To reference the outer loop counter from the inner loop, you use a label and dot notation:
<<outer>>
FOR step IN 1..25 LOOP FOR step IN 1..10 LOOP
...
IF outer.step > 15 THEN ...
END LOOP; END LOOP outer;
Using the EXIT Statement in a FOR Loop
The EXIT statement lets a FOR loop complete early. For example, the following loop normally executes ten times, but as soon as the FETCH statement fails to return a row, the loop completes no matter how many times it has executed:
FOR j IN 1..10 LOOP FETCH c1 INTO emp_rec; EXIT WHEN c1%NOTFOUND;
...
END LOOP;
Suppose you must exit early from a nested FOR loop. To complete not only the current loop, but also any enclosing loop, label the enclosing loop and use the label in an EXIT statement:
<<outer>>
FOR i IN 1..5 LOOP
...
FOR j IN 1..10 LOOP FETCH c1 INTO emp_rec;
EXIT outer WHEN c1%NOTFOUND; -- exit both FOR loops
...
END LOOP; END LOOP outer;
-- control passes here
Using PL/SQL Control Structures 4-11