Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
НОВИКОВ_2013-14 / ПОСОБИЕ_НОВИКОВ.doc
Скачиваний:
132
Добавлен:
19.03.2015
Размер:
10.66 Mб
Скачать

8.3. Расчет цифровых фильтров по фильтрам непрерывного времени

8.3.1 Методика синтеза цифровых фильтров. Общие положения

Проектирование фильтра (регулятора) включает в себя две основные задачи [22]:

- выбор места включения фильтра;

- выбор типа и расчет параметров фильтра, придающего системе заданные динамические свойства.

Как первая, так и вторая задача не имеют строгой математической формализации. Их решения базируются на опыте проектирования различных систем для различных применений.

Требования высокой точности регулирования и высокого быстродействия обуславливают применение замкнутых систем. Только замкнутые системы позволяют осуществить реализацию двух основных принципов:

- регулируемая величина на выходе (скорость, угол, момент и т.д.) должна по возможности точней повторять задающий (входной) сигнал;

- регулируемая величина на выходе по возможности не должна зависеть от возмущающих воздействий.

Таким образом, основным принципом управления является принцип обратной связи, позволяющий осуществлять контроль качества регулирования по отклонению управляемого параметра от заданного.

В современных системах фильтры являются цифровыми, т.к. такие системы в обязательном порядке содержат микроконтроллер или компьютер с платами расширения.

При цифровой реализации регулятора связь между непрерывным объектом управления и фильтром осуществляется через преобразователи аналоговых величин в цифровой код (АЦП) и цифрового кода в аналоговую величину (ЦАП). При этом сигналы с АЦП и сигналы, поступающие в ЦАП, обычно квантуются синхронно с периодом дискретизации Т.

Функциональная схема замкнутой системы приведена на рис. 8.6.

Входной сигнал uy* и сигнал, пропорциональный истинному значению регулируемой величины x* в цифровой форме обрабатываются с помощью компьютера (микропроцессора), выполняющего роль фильтра (регулятора). Цифровой сигнал на выходе процессора u* преобразуется ЦАП в аналоговый сигнал на входе непрерывного объекта управления u, который остается постоянным в течение периода дискретизации.

Сигналы АЦП и ЦАП квантованы по уровню, вследствие чего система управления непрерывным объектом с компьютером в контуре относится в общем случае к классу дискретных нелинейных систем.

Однако, если разрядность преобразователей достаточно велика, то можно пренебречь квантованием сигналов по уровню, заменив нелинейные статические характеристики АЦП и ЦАП линейными и введя при этом коэффициенты передачи

,

где - приращение аналоговой величиных на входе АЦП, соответствующее изменению выходной величины х* на одну дискретную единицу;

,

где - приращение выходного сигнала ЦАП при изменении на одну дискретную единицу входного сигналаu*.

Тогда математическое описание всей системы с компьютером в контуре регулирования может быть представлено линеаризованной структурной схемой, приведенной на рис. 8.7,

гдеWp(z) – передаточная функция цифрового фильтра при описании алгоритма его работы в области комплексной переменной z;

WЭО(s) – передаточная функция экстрополятора нулевого порядка;

Wоу(s) - передаточная функция объекта управления;

e-звено чистого запаздывания, учитывающее, что на вычисление управляющего воздействия в соответствии с передаточной функцией фильтра Wp(z) процессор затрачивает время τ

Таким образом объект управления описывается системой дифференциальных уравнений или передаточными функциями в области комплексного аргумента s, а алгоритм работы компьютера - разностными уравнениями или передаточными функциями в области аргумента z дискретного преобразования.

Могут быть использованы два подхода к проектированию цифрового фильтра.

Первый подход основан на синтезе непрерывного регулятора с последующим пересчетом его к цифровому аналогу.

При втором подходе дискретной аппроксимацией заменяется описание непрерывного объекта, в результате чего вся система оказывается описанной в области комплексной переменной z, а алгоритм работы цифровой части определяется в результате синтеза дискретной системы.

Наиболее распространенным является первый подход, поскольку он гармонично вытекает из классических методов исследования систем.

Таким образом, если исходное описание линейной системы непрерывно, то часто можно перейти к дискретному ее описанию.

Наиболее распространенным методом расчета цифровых фильтров является метод дискретизации аналогового фильтра [14].

Рассмотрим несколько методов преобразования (т.е. дискретизации) существующего аналогового фильтра в эквивалентный ему цифровой фильтр.

Пусть передаточная функция аналогового фильтра (представляющая собой преобразование Лапласа от импульсной характеристики) имеет вид

, (8.34)

причем коэффициенты ,(- нули,- полюсы) известны.

Соответствующее дифференциальное уравнение фильтра (8.34) имеет вид

, (8.35)

где ,- колебания на входе и выходе аналогового фильтра.

Соседние файлы в папке НОВИКОВ_2013-14