Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700432.doc
Скачиваний:
28
Добавлен:
01.05.2022
Размер:
6.74 Mб
Скачать

10.2. Метод растворения 3Не в 4Не

Э ффект охлаждения при растворении гелия -3 в гелии - 4 возникает из-за большой разницы молярных теплоемкостей и энтропий жидкого гелия 3 и его слабого раствора в Не4.

Как видно из рис. 10.4, где представлена температурная зависимость энтропии изотопов гелия. Верхняя линия соответствует зависимости энтропии гелия - 3 в растворе с 4Не от температуры, а нижняя прямая – зависимость энтропии от температуры для чистого 3Не. При изотермическом переходе системы из состояния 1 с энтропией S1 к состоянию 2 с энтропией S2 в соответствии с термодинамическим соотношением поглощается тепло

Q = То (S2 - S1) = То (103 То -17 То) = 86То2.

Откуда видно, что с понижением температуры в квадратичной зависимости от нее падает холодопроизводительность цикла.

О хлаждение при растворении гелия - 3 в гелий - 4 аналогично адиабатическому размагничиванию. Роль внешнего магнитного поля играет внутреннее взаимодейтвие системы при высокой концентрации гелия - 3, устанавливающего термодинамический "порядок" (малая энтропия). В этом процессе растворения расстояние между частицами гелия - 3 увеличивается, взаимодействие уменьшается (ослабляется) и должен наступить большой беспорядок, компенсация которого возможна только за счет снижения температуры.

Таким образом, чистый жидкий 3Не имеет упорядоченную структуру и малую энтропию, тогда как свойства раствора гелия - 3 в гелии - 4 иные. Особенностью жидкого гелия 4Не является то, что вследствие сверхтекучести и почти нулевой энтропии при Т  0 (5 К) он гидродинамически и термически почти инертен и ведет себя в растворе 3Не - 4Не лишь как "поддерживающая" среда для атомов гелия - 3. Слабый раствор гелия - 3 и гелии - 4 можно рассматривать как идеальный газ, состоящий из атомов 3Не, которые между собой не взаимодействуют; удельная теплоемкость такого идеального газа равна 3/2R и велика его энтропия. Таким образом, растворение гелия - 3 в гелии - 4 приводит к изменению состояния упорядоченности системы.

Рассмотрим диаграмму Т- X для смеси 3Не - 4Не, которая показана на рис. 10.5. По оси абсцисс отложена относительная концентрация гелия - 3 в гелии - 4, (Х = ), а по оси ординат – температура. Левая ветвь диаграммы представляет предельную концентрацию 3Не в 4Не, а правая же – предельную концентрацию 4Не - 3Не. Эти две ветви соединяются в точке с координатами (0,8 К и 0,65) и образуют область, в которой ниже Т = 0,8 К и содержание компонентов Х от 0,064 до 0,9 не может существовать однородный раствор 3Не и 4Не. В этой области будут отдельно сосуществовать две жидкости, причем 3Не как более легкая, находится в верхнем слое. Фаза, богатая Не3, играет роль жидкости, а фаза богатая Не4 – роль пара; осмотическое давление раствора эквивалентного давлению пара. При этом легкая фракция не сверхтекучая, а тяжелая – сверхтекучая. Выше верхней точки (расслоение кончается), можно провести  – линию, которая отделяет области, где существует сверхтекучесть, и где ее нет (справа от  – линии).

У этих растворов есть замечательное свойство: при максимальная возможная концентрация 3Не в 4Не не падает до нуля, а остается равной 6,5 %. Это и позволило создать эффективную холодильную машину-криостат растворения с помощью которой удается получать температуру меньше 10-2 К.

Что в принципе ограничивает возможности понижения температуры гелия откачкой его паров. Падение плотности пара по закону Больцмана.

,

где qисп – удельная теплота испарения.

При откачке гелия в единицу времени можно удалить количество пара m не больше

,

где - средняя тепловая скорость; А - сечение трубы, по которой идет откачка, ρn – плотность пара.

Поэтому и уносимое количество тепла , при низкой температуре становится ничтожно малым из-за быстрого уменьшения плотности пара. Но если в контакт с жидким гелием - 4 привести жидкий гелий – 3, то последний будет действовать как "насос": Гелий - 3 будет как бы испаряться, растворяясь в 4Не. Плотность "пара" даже при будет оставаться высокой.

Однако существует проблема: теплота испарения, т.е. взятая с обратным знаком теплота растворения гелия - 3 в гелии - 4 уменьшается пропорционально температуре, и это уже не столь быстрое падение.

Принципиальная схема криостата растворения, вернее его рабочего объема без ванны с жидким азотом, показана на рис. 10.6. В ванне предварительного охлаждения находится жидкий азот, а во вторую ступень теплообменника залит изотоп гелия – 4 при температуре 1,2 К. Через оба теплообменника проходит прямой и обратный потоки газа гелий – 3.

Прямой поток гелий – 3, проходя по капилляру, охлаждается в ванне испарителя 2 и по трубке теплообменника 3 поступает в ванну растворения 4, где он растворяется в жидком гелии – 4, находящемся в сверхтекучем состоянии с энтропией равной нулю. Атомы гелия – 3 в этих условиях как бы расширяются в пустоту, поскольку не взаимодействуют со сверхтекучими атомами гелия – 4 и при таком расширении охлаждаются и могут поглотить тепло Q. Пространство для обратного потока в теплообменнике 3 и ванне 2 в основном заполнены сверхтекучим гелием – 4 и в этой среде атомы гелия -3 диффундируют из ванны растворения 4 в ванну испарения 2. Там за счет тепла, отбираемого от потока, протекающего по трубке и дополнительного подогрева qдоп продиффундировавший гелий – 3 испаряется и его пары откачиваются вакуумным насосом – цикл замыкается.

В акуумный насос откачивает пары чистого гелия - 3, и сжимает их до давления 60 – 70 Тор (прямой поток в установку). Сжатый гелий охлаждается в ванне жидкого азота до  80 К, затем в ванне с жидким 4Не с температурой 1,2 К в теплообменнике , затем, пройдя по капилляру охлаждается в ванне 2 испарителя до 0,6 К и теплообменнике 3 и поступает в ванну растворения 4, где он растворяется в жидком гелии – 4, находящемся в сверхтекучем состоянии с энтропией равной нулю.

Вспомним о процессе ректификации, который применяется для разделения растворов, содержащих разные по летучести компоненты. Суть его в том, что если нагреть смесь из двух жидкостей, то относительное содержание более летучей компоненты в паре будет выше, чем в жидкости.

Для 6,5% смеси 3Не в 4Не при Т=0,5 0,8 К пар будет состоять из чистого 3Не, а плотность его будет примерно такая же, как и плотность пара над чистым жидким 3Не. Значит, его можно будет откачивать насосом и при этом поток газа будет достаточно большим.

Включив нагреватель в ванне испарения, сможем извлекать 3Не из раствора, т.е. очищать жидкий 4Не. Но ведь он находится в контакте с жидким 3Не и пока он не кончится, будет переходить в раствор, поддерживая концентрацию 6,5% и охлаждая ванну испарения. Для того чтобы процесс был непрерывным, необходимо возвращать 3Не, который откачивается насосом, возвращался назад. Для этого используется система теплообменников, один из которых 8 находится в ванне с 4Не в нем 3Не конденсируется охлаждаясь до ~1,2 К за счет откачки паров 4Не (на схеме не показано).