Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Методическое пособие 657

.pdf
Скачиваний:
7
Добавлен:
30.04.2022
Размер:
3.34 Mб
Скачать

 

При таких обозначениях листинг программы

Mathcad

 

представлен на рис.6.17.

 

 

 

 

 

 

 

 

 

 

Листинг Mathcad 6.1

 

 

 

 

 

 

 

 

 

i :

0, 1..127

 

T :

128

 

m :

1

 

u i

:

0.9

 

 

 

T

 

 

d i

: if

i

64, u i ,

0.9

j :

0..10

qi :

d i

f :

fft q

 

h :

ifft

f

 

 

 

 

 

 

 

 

 

 

 

 

10

 

 

 

 

 

100

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100

 

f j

5

 

 

 

arg f j

180

 

 

 

 

 

 

 

 

 

 

 

50

 

 

 

 

180

 

 

 

 

 

 

 

 

 

arg f j

 

 

 

 

 

 

 

 

 

 

 

 

 

50

 

 

0 0

 

5

10

 

 

0 0

 

 

 

 

 

 

 

 

 

j

 

 

 

 

5

10

 

0

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

 

 

 

 

 

1

 

 

 

 

 

1

 

 

 

 

 

 

d(i)

0

 

 

 

 

hi

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 0

100

200

 

 

1 0

 

100

200

 

 

 

 

 

 

i

 

 

 

 

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.6.17. Результаты применения быстрого преобразова-

 

ния Фурье к примеру 6.1.

 

 

 

 

 

 

 

 

 

Пример 6.4. Применить быстрое преобразование Фурье к примеру 6.2. По аналогии с примером 6.3 результаты расчета будут иметь следующий вид.

161

Листинг Mathcad 6.2

 

 

 

 

 

 

 

 

 

 

 

C:=100 N : 4

i :

 

0, 1..127

T :

128

m :

1 p :

6,28

m C

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

u1 i :

p

i

u2 i

:

p

i

T

 

u3(i):=pT/CN

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u1 i

if i

T

 

 

 

 

 

 

 

 

 

 

 

 

 

C N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

d i

:

u2 i if i

C

1 N

C

 

 

 

 

 

 

 

 

 

 

 

 

T

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u3 i if

N C

i C 1 N C

 

 

 

 

 

 

 

0 if

i

T

,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

qi :

d i

j:=0..20

f

:

fft q

h :

ifft

f

 

 

1.57

2

 

 

 

 

 

 

 

1.57

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

d(i)

1

 

 

 

 

 

 

 

hi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

0

0 0

 

 

 

 

2.82

10

1 2

1 0

 

 

 

 

 

50

 

100

150

 

 

 

 

50

 

100

150

 

 

0

 

i

 

127

 

 

 

 

0

 

 

i

127

 

6

 

 

 

 

 

 

 

 

 

200

 

 

 

 

 

4.302

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

arg f j

180

 

 

 

 

 

 

f j

 

 

 

 

 

 

 

100

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.123

0

 

 

 

 

 

 

 

 

 

0

0

 

10

20

 

0

 

10

20

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

j

 

20

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рис.6.18. Результаты применения быстрого преобразова-

ния Фурье к примеру 6.2

 

 

 

 

 

 

 

 

 

 

 

162

Значения величин гармоник f j в примере 6.3 отличаются

от примера 6.1, хотя общая закономерность их изменения остается той же. Это связано с тем, что БПФ имеет определен-

ный нормирующий множитель, за счет которого значения f j возрастают. Определить его величину можно, сравнив значения f j и M n . Как показывают расчеты, эта величина равна

5,655 и ее необходимо учитывать при конкретных расчетах спектров сигналов.

6.3. Определение спектра сигнала на основе моделирующих программ

В современных программных системах, например,

Electronics Workbench, Micro-CAP и др., имеется возмож-

ность получения спектра сигнала без задания его аналитической функции и других сопутствующих условий, как это имеет место при гармоническом анализе в системе Mathcad. Это позволяет наблюдать спектр колебаний в различных точках электрической схемы, ускоряя процедуру ее расчета и моделирования.

Для того, чтобы определить спектр сигнала необходимо выполнить следующую последовательность действий:

1.Собрать электрическую схему в программе EWB с источником энергии, форма колебаний которого имеет негармоническую форму. В случае не стандартной формы сигнала необходимо использовать процедуру программирования с источником PWL (п.3.3).

2.Установить в исследуемой схеме номера контрольных точек (Nod), используя меню Circuit пункта Schematic Option через установку метки в окошечке «Snow nodes»

(рис.3.5).

3.Выбрать в меню «Analysis» режим «Fourier» (рис.6.19), обеспечивающий спектральное представление

163

сигнала на основе быстрого преобразования Фурье. Отличием этого преобразования от аналогичного в пакете Mathcad является представление величин амплитуд спектральных составляющих в нормированном виде, т.е. соответствующих расчетным значениям, определяемым по формулам (5.8-5.10).

Рис.6.19. Окно EWB для выбора параметров преобразования «Fourier» (спектральный анализ)

В соответствии с рис.6.19 элементы окна установки режима Фурье-анализа имеют следующие назначения:

Output node – номер контрольной точки (ноды), в которой анализируется спектр сигнала;

Fundamental frequency – основная частота колебания (частота первой гармоники));

Number harmonic – число анализируемых гармоник; Vertical scall – масштаб по оси Y (линейный, логарифмиче-

ский, в децибелах);

164

Advanced – набор опций этого блока предназначен для определения более тонкой структуры анализируемого сигнала путем введения дополнительных выборок (по умолчанию выключены);

Number of points per harmonic – количество отсчетов (вы-

борок) на одну гармонику;

Sampling frequency – частота следования выборок;

Display phase – вывод на экран распределения фаз всех гармонических составляющих в виде непрерывной функции (по умолчанию выводится только график амплитуд гармоник); Output as line graph – вывод на экран распределения амплитуд всех гармонических составляющих в виде непрерывной

функции (по умолчанию - в виде линейчатого спектра).

Для примера на рис.6.20 показан амплитудный и фазовый спектры колебания, подаваемого в схему рис.3.8 в точке (ноде) 1, при частоте первой гармоники f 200 Гц и числе гармоник

9, при выключенном режиме Advanced и линейном масштабе (Linear) вертикальной шкалы (Vertical scall), а также активном окне Display phase.

165

Рис.6.20. Результаты Фурье-анализа сигнала в схеме рис.3.8.

Количественные значения амплитудного и фазового спектра можно определить, если включить режим измерения на рис.6.20 (третья иконка, справа вверху), предварительно «щелкнув» левой кнопкой мыши на графике, подлежащем измерению. В результате на графике появляются две визирные линейки, перемещение которых курсором за их верхнюю часть позволяет получить точные значения параметров распределения, индицируемых в окне – ярлыке (рис.6.21). К этим параметрам относятся: значения частоты x1, x2 в точках установки

первой (левой) и второй визирных линеек, амплитуда гармоник y1, y2, разность указанных параметров и их обратные ве-

личины ( dx, dy, 1/ dx, 1/ dy ), а также их минимальные и максимальные значения min x, max x, max y . Расположение окна можно менять, «перетаскивая» его за верхнюю часть.

166

Рис.6.21. Окно-ярлык для измерения параметров спектра сигнала

В нижней части окна Фурье-анализа (рис.6.20) имеется графа” Total harmonic distortion” (закрыта движком), которая определяет величину коэффициента гармоник в соответствии с формулой

Ai2

K i 2 100% ,

A1

где Ai - текущее значение гармоники в спектре сигнала.

Значение K появляется на экране при анализе только амплитудного спектра. Если анализируется еще и фазовый спектр, то величина коэффициента гармоник будет выводиться только при распечатке.

167

Такие вычисления полезны, например, при анализе схемы линейного усилителя звуковых частот.

Приведем теперь пример получения спектра сигнала по примеру 6.1 через процедуру моделирования на ЭВМ с помо-

щью программы Electronic Workbench.

Пример 6.5. Определить спектр сигнала, график которого представлен на рис.6.7 и задается формулой

u t : if t

t

, 1, f t T , 1, 0 ,

2

 

 

при T =0.005 с.

Для получения сигнала u t воспользуемся функциональным генератором EWB (рис.6.22), установив на нем частоту (FREQUENCY) f 1/T 1/ 0.005 200 Гц. Значение величи-

ны DUTY CYCLE (коэффициент заполнения) возьмем равным 50, а амплитуду сигнала (AMPLITUDE) равной 0.5 V, а величину OFFSET (установка смещения сигнала) равной нулю.

Рис. 6.22. Установка входного сигнала на лицевой панели функционального генератора

168

Соберем теперь схему из элементов EWB для анализа спектра сигнала (рис.6.23), установив затем номера Nod в точках измерения.

Рис.6.23. Схема для анализа спектра сигнала u t

Имея точку измерения спектра сигнала, воспользуемся далее процедурой спектрального анализа «Fourier» с установкой в окне (рис.6.24) необходимых параметров спектрального анализа.

169

Рис.6.24. Установка параметров спектрального анализа в окне преобразования «Fourier»

Нажав на кнопку «Simulate» (рис.6.24), получаем амплитудный и фазовый спектры сигнала (рис.6.25).

Рис.6.25. Амплитудный и фазовый спектр сигнала u(t)

Полученный спектр сигнала u(t) имеет аналогичную структуру, рассчитанную с помощью пакета Mathcad (рис.6.8).

170