Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
BKh_EKZ_BILETY2021.docx
Скачиваний:
26
Добавлен:
19.07.2021
Размер:
146.52 Кб
Скачать

Билет 17

1)Пентозный путь окисления глюкозы и его биологическая роль.

Пентозофосфатный путь можно разделить две части: окислительную и неокислительную. В окислительной части, включающей три реакции, образуются НАДФН∙Н+и рибулозо-5-фосфат. В неокислительной части рибулозо-5-фосфат превращается в различные моносахариды с 3, 4, 5, 6, 7 и 8 атомами углерода; конечными продуктами являются фруктозо-6-фосфат и 3-ФГА.

Окислительная часть.Первая реакция–дегидрирование глюкозо-6-фосфата глюкозо-6-фосфатдегидрогеназой с образованием δ-лактона 6-фосфоглюконовой кислоты и НАДФН∙Н+ (НАДФ+ – кофермент глюкозо-6-фосфатдегидрогеназы).

Вторая реакция – гидролиз 6-фосфоглюконолактона глюконолактонгидролазой. Продукт реакции – 6-фосфоглюконат.

Третья реакция– дегидрирование и декарбоксилирование 6-фосфоглюконолактона ферментом 6-фосфоглюконатдегидрогеназой, коферментом которого является НАДФ+. В ходе реакции восстанавливается кофермент и отщепляется С-1 глюкозы с образованием рибулозо-5-фосфата.

Неокислительная часть. В отличие от первой, окислительной, все реакции этой части пентозофосфатного пути обратимы

Рибулозо-5-фосфат может изомеризоваться (фермент – кетоизомераза) в рибозу-5-фосфат и эпимеризоваться (фермент –эпимераза) в ксилулозо-5-фосфат. Далее следуют два типа реакций: транскетолазная и трансальдолазная.

Транскетолаза(кофермент – тиаминпирофосфат) отщепляет двухуглеродный фрагмент и переносит его на другие сахара (см. схему).Трансальдолазапереносит трехуглеродные фрагменты.

В реакцию вначале вступают рибозо-5-фосфат и ксилулозо-5-фосфат. Это – транскетолазная реакция: переносится 2С-фрагмент от ксилулозо-5-фосфата на рибозо-5-фосфат.

Затем два образовавшиеся соединения реагируют друг с другом в трансальдолазной реакции; при этом в результате переноса 3С-фрагмента от седогептулозо-7-фосфата на 3-ФГА образуются эритрозо-4-фосфат и фруктозо-6-фосфат.Это F-вариант пентозофосфатного пути. Он характерен для жировой ткани.

Однако реакции могут идти и по другому пути .Этот путь обозначается как L-вариант. Он протекает в печени и других органах. В этом случае в трансальдолазной реакции образуется октулозо-1,8-дифосфат.

Эритрозо-4-фосфат и фруктозо-6-фосфат могут вступать в транскетолазную реакцию, в результате которой образуются фруктозо-6-фосфат и 3-ФГА.

Общее уравнение окислительной и неокислительной частей пентозофосфатного пути можно представить в следующем виде:: 6Глюкозо-6-Ф + 7Н2О + 12 НАДФ+ 5 Пентозо-5-Ф + 6СО2 + 12 НАДФН∙Н+ + Фн.

Биологическая роль пентозофосфатного пути у взрослого человека состоит в выполнении двух важных функций:

· он является поставщиком пентоз, которые необходимы для синтеза нуклеиновых кислот, коферментов, макроэргов для пластических целей.

· служит источником НАДФН2, который, в свою очередь, используется для:

1. восстановительных синтезов стероидных гормонов, жирных кислот

2. активно участвует в обезвреживании токсичных веществ в печени

3. в эритроцитах НАДФН2 восстанавливает трипептид глютатион, обеспечивая тем самым резистентность эритроцитов.

2)Свободное окисление. Про- и антиоксидантные системы организма.

Свободное окисление, не сопряженное с фосфорилированием АДФ, не сопровождающееся трансформацией энергии, выделяющейся при окислении в энергию макроэргических связей. При свободном окислении высвобождающаяся при сопряженном с окислением распаде химических связей энергия переходит в тепловую и рассеивается.

По типу свободного окисления идут все без исключения оксигеназные реакции, все окислительные реакции, ускоряемые пероксидазами или сопровождающиеся образованием Н2О2, многие реакции, катализируемые оксидазами.

Процессы свободного окисления сосредоточены в цитозоле, в мембране эндоплазматической сети клетки, в мембранах лизосом, пероксисом и аппарата Гольджи, на внешних мембранах митохондрий и хлоропластов. Они идут также в ядерном аппарате клетки.

Свободное окисление выполняет важные биологические функции, оно обеспечивает поддержание температуры тела на более высоком энергетическом уровне, чем температура окружающей среды. Биологическое окисление выполняет важную функцию модификации чужеродных соединений (ксенобиотиков).

Ферменты антиоксидантной системы:

супероксиддисмутаза, каталаза, пероксидаза (глутатионпероксидаза), глутатионредуктаза. Наиболее активны эти ферменты в печени, почках и надпочечниках.

Супероксиддисмутаза превращает супероксидные анионы в пероксид водорода:

2О2- + 2Н+ → Н2О2 + О2

Супероксидисмутаза является мощным ингибитором свободнорадикального окисления в организме, защищающим биополимеры (белки, нуклеиновые кислоты и др.) от окислительной деструкции. Супероксидисмутаза – индуцируемый фермент, т.е. синтез его увеличивается, если в клетках активируется ПОЛ.

Каталаза является гемопротеином и катализирует реакцию разложения пероксида водорода:

2Н2О2 → 2Н2О + О2

В клетках каталаза локализована в пероксисомах, где образуется наибольшее количество пероксида водорода, а также в лейкоцитах, где она защищает клетки от последствий «респираторного взрыва».

Глутатионпероксидаза – важнейший фермент, обеспечивающий инактивацию пероксида водорода и пероксидных радикалов. Он катализирует восстановление пероксидов при участии трипептида глутатиона. SH-группа глутатиона служит донором электронов и, окисляясь образует дисульфидную форму глутатиона:

Н2О2 + 2НS-глутатион → 2Н2О + глутатион-S-S-глутатион

Окисленный глутатион восстанавливается глутатионредуктазой:

глутатион-S-S-глутатион + НАДФН+Н+ → 2 HS-глутатион + НАДФ+

Глутатионпероксидаза в качестве кофермента использует селен. При его недостатке активность антиоксидантной защиты снижается.

Неферментативные антиоксиданты:

1) Природные водорастворимые антиоксиданты (витамин С; карнозин; таурин; восстановленные тиолы, содержащие SH-группы; цистеин; НS-КоА; белки, содержащие селен). Витамин С участвует в ингибировании ПОЛ с помощью двух механизмов. Во-первых, он восстанавливает окисленную форму витамина Е и поддерживает необходимую концентрацию этого антиоксиданта в мембранах клеток. Во-вторых, витамин С взаимодействует как восстановитель с водорастворимыми активными формами кислорода и инактивирует их.

2) Липофильные низкомолекулярные антиоксиданты, локализованные в мембранах клеток (витамин Е; β-каротин; КоQ; нафтахоиноны). Витамин Е – наиболее распространенный антиоксидант в природе, способен инактивировать свободные радикалы непосредственно в гидрофобном слое мембран и тем самым предотвращать развитие цепи перекисного окисления. b-каротин, предшественник витамина А, также ингибирует ПОЛ. Уменьшение содержания этого антиоксиданта в тканях приводит к тому, что продукты ПОЛ начинают производить вместо физиологического патологический эффект.

3)Ферменты плазмы крови: экскреторные, индикаторные, инкреторные. Диагностическое значение определения активности.

Ферменты, которые обнаруживаются в норме в плазме или сыворотке крови, условно можно разделить на 3 группы: секреторные, индикаторные и экскреторные. Секреторные ферменты, синтезируясь в печени, в норме выделяются в плазму крови, где играют определенную физиологическую роль. Типичными представителями данной группы являются ферменты, участвующие в процессе свертывания крови, и сывороточная холинэстераза. Индикаторные (клеточные) ферменты попадают в кровь из тканей, где они выполняют определенные внутриклеточные функции. Один из них находится главным образом в цитозоле клетки (ЛДГ, альдолаза), другие – в митохондриях (глутаматдегидрогеназа), третьи – в лизосомах (β-глюкуронидаза, кислая фосфатаза) и т.д. Большая часть индикаторных ферментов в сыворотке крови определяется в норме лишь в следовых количествах. При поражении тех или иных тканей ферменты из клеток «вымываются» в кровь; их активность в сыворотке резко возрастает, являясь индикатором степени и глубины повреждения этих тканей.

Экскреторные ферменты синтезируются главным образом в печени (лейцинаминопептидаза, щелочная фосфатаза и др.). В физиологических условиях эти ферменты в основном выделяются с желчью. Еще не полностью выяснены механизмы, регулирующие поступление данных ферментов в желчные капилляры. При многих патологических процессах выделение экскреторных ферментов с желчью нарушается, а активность в плазме крови повышается.

Клиническая ферментолгия получила развитие в последние годы и в вет практике. Определяют активность ферментов в сыворотке крови: альдолазы (ЛДГ), фосфотазы, аминотрансферазы, креатинкиназы. Обычно активность ферментов в сыворотке крови в норме более низкое, чем в клетке. При повреждении клетки и выходе ферментов в кровь активность ф-а сыворотки крови значительно повышается. При подозрении заболевания печени, при контакте с гипатитным больным принято определение активности (АЛТ) аланинаминотрансферазы. Активность щелочной фосфатазы (ЩФ) повышается при костной патологии, при заболеванияи почек. Активность креатинкиназы (КФК) повышается при миопатии (заболевании мышечной ткани). Лактатдегидрогиназа (ЛДГ) — катализирует р-ию превращения молочной кислоты. Она имеет четвертичную структуру, образованную 4-мя субъединицами 2-х типов:Н — сердце, М — мышца.За счет сочетания этих двух типов ЛДГ имеет 5-ть изоформ, локализованых в разных органах.При остром инфаркте миокарда у больных в сыворотке крови повышается активность изофермента ЛДГ1 и ЛДГ2. При паренхиматозном гепатите ЛДГ4 и ЛДГ5. Холиэстераза-ф-т, участвующий в процессе передачи нервного импуьса, гидролизуя ацетилхолин на ацетат и холин. Ацетилхолинэстераза(АХЭ) сыворотки крови происходит в печени, а поэтому при потологии этого органа наблюдается снижение активности этого фермента