
- •Билет 1
- •1)Предмет и задачи биохимии.
- •Билет 2
- •3)Синтез гема. Регуляция. Порфирин.
- •Билет 3
- •1)Физ-хим свойства и методы фракционирования белков
- •2)Гликолиз
- •Билет 4
- •1)Сложные белки. Виды, структура и ф-ии
- •2)Активаторы и ингибиторы ферментов
- •Билет 5
- •2)Изоферменты и диагн значение опред их активности.
- •Билет 6
- •Билет 7
- •1)Гемоглобин
- •Билет 8
- •3)Глюкокортикоиды
- •Билет 9
- •1)Функциональные участки ферментов.
- •2)Метаболизм ацетил-КоА
- •Билет 10
- •2)Роль цикла трикарбоновых кислот во взаимосвязи обмен белков, липидов, углеводов.
- •Билет 11
- •Билет 12
- •2)Гликогенолиз. Регуляция концентрации глюкозы крови.
- •Билет 13
- •3. Гормоны поджелудочной железы.
- •Билет 14
- •1)Энзимодиагностика заболеваний внутренних органов.
- •2)Синтез высших жирных кислот.
- •3) Система антикоагулянтов.
- •Билет 15
- •Билет 16
- •3)Биологическая роль и клиническое значение определения липопротеинов плазмы крови.
- •Билет 17
- •1)Пентозный путь окисления глюкозы и его биологическая роль.
- •Билет 18
- •Билет 19
- •Билет 20
- •1)Метаболизм пировиноградной кислоты
- •Билет 21
- •Билет 22
- •3) Диагностическое значение исследования ферментов: лдг, кк, аст, алт
- •Билет 23
- •1)Метаболизм кетоновых тел.
- •Билет 24
- •3) Калликреин-кинопоказ и ренин-ангиотензиновая системы.
- •Билет 25
- •2) Витамин d (антирахитический, группа кальциферолы)
- •Билет 26
- •2) Роль почек и легких в поддержании кислотно-основного равновесия.
- •3)Обезвреживающая функция печени, механизмы конъюгации и гидроксилирования
- •Билет 27
- •Билет 28
- •1)Дезаминирование аминокислот. Виды дезаминирования. Прямое и непрямое дезаминирование.
- •Билет 29
- •1)Декарбоксилирование аминокислт. Участие биогенных аминов в регуляции обмена веществ.
- •Билет 30
- •1)Биосинтез мочевины Диагностическое значение определения в крови и моче.
- •2) Эйкозаноиды.
- •Билет 31
- •2)Гормоны гипоталамуса, их строение и функции.
- •3)Биохимические основы фагоцитоза.
- •Билет 32
- •Билет 33
- •1)Распад гемоглобина. Основные продукты распада, место их образования и пути выведения.
- •Билет 34
- •3) Лп плазмы крови, их функции.
- •Билет 35
- •3)Регуляция и поддержание кислотно-основного равновесия.
- •Билет 36
- •1) Витамин d
- •2) Регуляция и поддержание кислотно-основного равновесия.
2)Метаболизм ацетил-КоА
Под термином «кетоновые (ацетоновые) тела» подразумевают ацетоуксусную кислоту (ацетоацетат), β-оксимасляную кислоту (β-оксибутират) и ацетон.
В здоровом организме ацетон в крови присутствует в крайне низких концентрациях, образуется в результате спонтанного декарбоксилирования ацетоацетата.
Кетоновые тела образуются в печени.
На первом этапе из 2 молекул ацетил-КоА образуется ацетоацетил-КоА. Реакция катализируется ферментомацетил-КоА-ацетилтрансферазой (3-кетотиолазой). Затем ацетоацетил-КоА взаимодействует еще с одной молекулой ацетил-КоА. Реакция протекает под влиянием фермента гидро-ксиметилглутарил-КоА-синтетазы. Образовавшийся β-окси-β-метилглутарил-КоА способен под действием гидроксиметилглутарил-КоА-лиазы расщепляться на ацетоацетат и ацетил-КоА.
Ацетоацетат восстанавливается при участии НАД-зависимой D-3-гид-роксибутиратдегидрогеназы, при этом образуется D-β-оксимасляная кислота (D-3-гидроксибутират).
Существует второй путь синтеза кетоновых тел. Образовавшийся путем конденсации 2 молекул ацетил-КоА ацетоацетил-КоА способен отщеплять коэнзим А и превращаться в ацетоацетат. Этот процесс катализируется ферментом ацетоацетил-КоА-гидролазой (деацилазой).
Ацетил-КоА, образовавшийся при окислении жирных кислот, включается в цикл трикарбоновых кислот в условиях, когда расщепление жиров и углеводов соответствующим образом сбалансировано. Включение ацетил-КоА в цикл Кребса зависит от доступности оксалоацетата для образования цитрата. Однако если расщепление жиров преобладает, судьба ацетил-КоА изменяется. Объясняется это тем, что в отсутствие углеводов или при нарушении их использования концентрация оксалоацетата снижается. При голодании или диабете оксалоацетат расходуется на образование глюкозы и поэтому не может конденсироваться с ацетил-КоА. В таких условиях путь метаболизма ацетил-КоА отклоняется в сторону образования ацетоацетата и D-3-гидрокси-бутирата, т.е. кетоновых тел.
В крови здорового человека кетоновые тела содержатся лишь в очень небольших концентрациях. При патологических состояниях концентрация кетоновых тел в сыворотке крови увеличивается.
Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.
Как отмечалось, основным местом образования ацетоацетата и 3-гид-роксибутирата служит печень. Из митохондрий печени эти соединения диффундируют в кровь и переносятся к периферическим тканям.
Действительно, сердечная мышца и корковый слой почек предпочтительно используют в качестве «топлива» ацетоацетат, а не глюкозу.
В противоположность этому глюкоза является главным «топливом» для мозга у лиц, получающих сбалансированную пищу. При голодании и диабете мозг адаптируется к использованию ацетоацетата. Установлено, что в условиях длительного голодания 75% потребности мозга в «топливе» удовлетворяется за счет ацетоацетата
3)Белки соединительной ткани.
1)Коллаген составляет 25–33% от общего количества белка организма взрослого человека, или 6% от массы тела.
Тропоколлаген – основная структурная единица коллагена.
Коллаген синтезируется клетками из свободных АК. Коллаген – внеклеточный белок, но он синтезируется в виде внутриклеточной молекулы-предшественника, которая перед образованием фибрилл зрелого коллагена подвергается посттрансляционной модификации. Предшественник коллагена (сначала препроколлаген, а затем проколлаген) претерпевает процессинг в ходе прохождения через эндоплазматический ретикулум и комплекс Гольджи до появления во внеклеточном пространстве. Внеклеточные амино- и карбоксипротеаза проколлагена удаляют соответственно аминоконцевой и карбоксиконцевой пропептиды. Вновь образованныемолекулы коллагена спонтанно собираются в коллагеновые фибриллы. В результате перекрестного связывания цепей и спиральных молекул фибрилл через основания Шиффа и альдольную конденсацию (т.е. перекрестное связывание их рядом ковалентных связей) образовавшиеся фибриллы приобретают силу напряжения зрелых коллагеновых фибрилл.
2)Эластин – основной белковый компонент, из которого состоят эластические волокна. Он отличается от коллагена по химическому составу и молекулярной структуре. В целом характерной особенностью первичной структуры эластина является слишком малое содержание полярных аминокислотных остатков. При ферментативном гидролизе эластина в гидролизате обнаруживаются десмозин и изодесмозин. Эти соединения содержатся только в эластине.
Эластин вместе с коллагеном, протеогликанами и рядом глико- и мукопротеинов является продуктом биосинтетической деятельности фибробластов. Непосредственным продуктом клеточного биосинтезасчитается не эластин, а его предшественник – тропоэластин (в коллагене – проколлаген). Тропоэластин не содержит поперечных связей, обладает растворимостью. В последующем тропоэластин превращается в зрелый эластин, нерастворимый, содержащий большое количество поперечных связей .
3)Протеогликаны-высокомолекулярные углеводно-белковые соединения. Они образуют основную субстанцию межклеточного матрикса соединительной ткани. На долю протеогликанов приходится до 30% от сухой массы соединительной ткани. Представители: гиалуропротеин. Ионообменная функция, регуляция процессов диффузии связ.экстрацеллюлярной воды; накопление Са в очагах оссификации и одновременное накопление хондроктансульфатов, активно связ.ионы Са.