Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

книги студ / color atlas of physiology 5th ed[1]. (a. despopoulos et al, thieme 2003)

.pdf
Скачиваний:
124
Добавлен:
03.09.2020
Размер:
31.56 Mб
Скачать

5 Respiration

118

Surface Tension, Surfactant

Surface tension is the main factor that determines the compliance of the lung-chest system (!p. 116) and develops at gas-liquid interfaces or, in the case of the lungs, on the gas exchange surface of the alveoli (ca. 100 m2).

The effectiveness of these forces can be demonstrated by filling an isolated and completely collapsed lung with (a) air or (b) liquid. In example (a), the lung exerts a much higher resistance, especially at the beginning of the filling phase. This represents the opening pressure, which raises the alveolar pressure (PA) to about 2 kPa or 15 mmHg when the total lung capacity is reached (!p. 113 A). In example (b), the resistance and therefore PA is only one-fourth as large. Accordingly, the larger pressure requirement in example (a) is required to overcome surface tension.

If a gas bubble with radius r is surrounded by liquid, the surface tension γ (N ! m– 1) of the liquid raises the pressure inside the bubble relative to the outside pressure (transmural pressure P !0). According to Laplace’s law

(cf. p. 188):

 

P " 2γ/r (Pa).

[5.3]

Since γ normally remains constant for the respective liquid (e.g., plasma: 10– 3 N ! m– 1), P becomes larger and larger as r decreases.

Soap bubble model. If a flat soap bubble is positioned on the opening of a cylinder, r will be relatively large (!A1) and P small. (Since two air-liquid interfaces have to be considered in this case, Eq. 5.3 yields P = 4γ/r). For the bubble volume to expand, r must initially decrease and P must increase (!A2). Hence, a relatively high “opening pressure” is required. As the bubble further expands, r increases again (!A3) and the pressure requirement/volume expansion ratio decreases. The alveoli work in a similar fashion. This model demonstrates that, in the case of two alveoli connected with each other (!A4), the smaller one ( P2 high) would normally become even smaller while the larger one ( P1 low) becomes larger due to pressure equalization.

Surfactant (surface-active agent) lining the inner alveolar surface prevents this problem by lowering γ in smaller alveoli more potently than in larger alveoli. Surfactant is a mixture of

proteins and phospholipids (chiefly dipalmitoyl lecithin) secreted by alveolar type II cells.

Respiratory distress syndrome of the newborn, a serious pulmonary gas exchange disorder, is caused by failure of the immature lung to produce sufficient quantities of surfactant. Lung damage related to O2 toxicity (!p. 136) is also partly due to oxidative destruction of surfactant, leading to reduced compliance. This can ultimately result in alveolar collapse (atelectasis) and pulmonary edema.

Dynamic Lung Function Tests

The maximum breathing capacity (MBC) is the greatest volume of gas that can be breathed (for 10 s) by voluntarily increasing the tidal volume and respiratory rate (!B). The MBC normally ranges from 120 to 170 L/min. This capacity can be useful for monitoring diseases affecting the respiratory muscles, e.g., myasthenia gravis.

The forced expiratory volume (FEV or Tiffeneau test) is the maximum volume of gas that can be expelled from the lungs. In clinical medicine, FEV in the first second (FEV1) is routinely measured. When its absolute value is related to the forced vital capacity (FVC), the relative FEV1 (normally !0.7) is obtained. (FVC is the maximum volume of gas that can be expelled from the lungs as quickly and as forcefully as possible from a position of full inspiration; !C). It is often slightly lower than the vital capacity VC (!p. 112). Maximum expiratory flow, which is measured using a pneumotachygraph during FVC measurement, is around 10 L/s.

Dynamic lung function tests are useful for distinguishing restrictive lung disease (RLD) from obstructive lung disease (OLD). RLD is characterized by a functional reduction of lung volume, as in pulmonary edema, pneumonia and impaired lung inflation due to spinal curvature, whereas OLD is characterized by physical narrowing of the airways, as in asthma, bronchitis, emphysema, and vocal cord paralysis (!C2).

As with VC (!p. 112), empirical formulas are also used to standardize FVC for age, height and sex.

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

A. Surface tension (soap bubble model)

 

 

 

 

 

 

r1 > r2

P1 <

P2

 

 

 

P

 

r

P

 

r2

Tests

 

 

 

 

 

 

 

 

 

 

 

 

 

r1

 

 

P

 

r

 

 

P1

 

 

FunctionLung

 

r

 

 

 

 

 

 

P2

 

1

2

 

 

3

 

 

4

Tension,

 

 

 

 

 

 

B. Maximum breathing capacity (MBC)

 

 

 

 

 

 

Maximum respiratory depth and rate

 

 

 

 

Surface

 

+2

Normal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(L)

+1

 

 

 

 

 

 

 

5.7

 

 

 

 

 

 

 

 

Volume

0

Abnormal

 

 

 

 

 

Plate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

–1

10s

 

 

 

Spirometer

 

 

 

 

 

 

 

 

 

 

 

 

 

Paper feed

 

 

 

 

 

 

C. Forced expired volume in first second (FEV1)

 

 

 

 

 

+2

Maximum expiratory rate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+1

 

 

Abnormal

 

 

 

 

 

(L)

 

 

 

 

 

 

 

 

 

Volume

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Normal

 

 

 

 

 

 

 

–1

 

 

 

 

 

 

 

 

 

 

 

1s

 

 

 

 

 

 

 

 

Paper feed

 

 

 

 

 

 

1 Measurement

 

 

 

 

 

 

 

 

 

 

 

 

1.0

0.8

0.6

0.4

 

 

 

 

 

1.0

 

 

 

 

Forced vital

 

 

 

 

 

 

 

 

capacity (FVC)

 

 

1

0.8

Normal

 

Restrictive

 

as fraction of norm

 

 

FEV

 

 

lung disease

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative

0.6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Obstructive

 

Combined

 

 

 

 

2

 

0.4

lung disease

lung disease

 

 

119

 

 

 

 

 

 

 

 

 

Clinical significance

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

5 Respiration

120

Pulmonary Gas Exchange

Alveolar ventilation. Only the alveolar part (VA) of the tidal volume (VT) reaches the alveoli. The rest goes to dead space (VD). It follows that VA = VT – VD (L) (!p. 114). Multiplying these volumes by the respiratory rate (f in min. .1) results. in the respective. ventilation,. . . i.e.,

VA, VE (or VT), and VD. Thus, VA = VE–VD (L ! min. – 1). Since VD is anatomically determined,

VD (= VD.! f) rises with f. If, at a given total ventilation (VE = VT ! f), the breathing becomes. more frequent (f ") yet more. shallow (VT #), VA will decrease because VD increases.

.

Example: At a VE of 8 L ! min– 1, a VD.of 0.15 L and a normal respiratory. rate f of 16 min-1 VA = 5.6 L ! min– 1 or 70%. of VE. When f is doubled and VT drops to onehalf,. VA drops to 3.2 L ! min– 1 or 40% of VT, although VE (8 L ! min– 1) remains unchanged.

Alveolar gas exchange can therefore decrease due to flat breathing and panting (e.g., due to a painful rib fracture) or artificial enlargement

of VD

(!p. 134).

.

 

 

O2 consumption (VO2) is calculated as the

difference between the inspired O2 volume/time

.

! FIO2, and

the expired

 

O2 volume/time

(= VE

.

.

 

.

 

 

(= VE

!.FEO2. Therefore, VO2

= VE (FIO2 – FEO2). At

rest, VO2 !8 (0.21–0.17) = 0.32 L ! min– 1.

 

 

 

 

 

.

The eliminated CO2 volume (VCO2) is calcu-

 

.

 

 

 

 

lated as VT ! FECO2 (!0.26 L ! min – 1 at rest; FICO2

 

.

.

 

 

 

!0). VO2 and

VCO2 increase about tenfold

during. strenuous. physical work (!p. 74). The VCO2 to VO2 ratio is called the respiratory quotient (RQ), which depends on a person’s nutritional state. RQ ranges from 0.7 to 1.0 (!p. 228).

The exchange of gases between the alveoli and the blood occurs by diffusion, as described by Fick’s law of diffusion (!Eq. 1.7, p. 22,). The driving “force” for this diffusion is provided by the partial pressure differences between alveolar space and erythrocytes in pulmonary capillary blood (!A). The mean alveolar partial pressure of O2 (PAO2) is about 13.3 kPa

(100 mmHg) and that of CO2 (PACO2) is about 5.3 kPa (40 mmHg). The mean partial pres-

sures in the “venous” blood of the pulmonary artery are approx. 5.3 kPa (40 mmHg) for O2 (PVO2) and approx. 6.1 kPa (46 mmHg) for CO2 (PVCO2). Hence, the mean partial pressure difference between alveolus and capillary is

about 8 kPa (60 mmHg) for O2 and about 0.8 kPa (6 mmHg) for CO2, although regional variation occurs (!p. 122). PAO2 will rise when PACO2 falls (e.g., due to hyperventilation) and vice versa (!alveolar gas equation, p. 136).

O2 diffuses about 1–2 µm from alveolus to bloodstream (diffusion distance). Under normal resting conditions, the blood in the pulmonary capillary is in contact with the alveolus for about 0.75 s. This contact time (!A) is long enough for the blood to equilibrate with the partial pressure of alveolar gases. The capillary blood is then arterialized. PO2 and PCO2 in arterialized blood (PaO2 and PaCO2) are about the same as the corresponding mean alveolar pressures (PAO2 and PACO2). However, venous blood enters the arterialized blood through arteriovenous shunts in the lung and from bronchial and thebesian veins (!B). This extra-alveolar shunt as well as ventilation–per- fusion inequality (!p. 122) make the PaO2 decrease from 13.3 kPa (after alveolar passage) to about 12.0 kPa (90 mmHg) in the aorta (PaCO2 increases slightly; !A and p. 107).

The small pressure difference of about 0.8 kPa is large enough for alveolar CO2 exchange, since Krogh’s diffusion coefficient K for CO2 (KCO2 !2.5 ! 10–16 m2 ! s– 1 ! Pa– 1 in tissue) is 23 times larger than that for O2 (!p. 22). Thus, CO2 diffuses much more rapidly than O2. During physical work (high cardiac output), the contact time falls to a third of the resting value. If diffusion is impaired (see below), alveolar equilibration of O2 partial pressure is less likely to occur during physical exercise than at rest.

Impairment of alveolar gas exchange can occur for several reasons: (a) when the blood flow rate along the alveolar capillaries decreases (e.g., due to pulmonary infarction;

!B2), (b) if a diffusion barrier exists (e.g., due to a thickened alveolar wall, as in pulmonary edema; !B3), and (c) if alveolar ventilation is reduced (e.g., due to bronchial obstruction;

!B4 ). Cases B2 and B3 lead to an increase in functional dead space (!p. 114); cases B3 and

B4 lead to inadequate arterialization of the blood (alveolar shunt, i.e. non-arterialized blood mixing towards arterial blood). Gradual impairments of type B2 and B4 can occur even in healthy individuals (!p. 122).

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

A. Alveolar gas exchange

 

 

 

 

 

 

 

 

Alveolus

 

 

 

 

PaCO2

=

PaO2=

Lung

Pa (kPa)

 

5.33kPa

13.33kPa

 

 

Pv (kPa)

(40mmHg)

(100mmHg)

capillary

 

 

5.33

 

 

 

 

13.33

 

6.13

 

Erythrocyte

 

5.33

Exchange

 

 

 

 

kPa

mmHg

 

mmHg kPa

 

 

 

Gas

 

100

 

100

 

 

 

 

 

 

 

 

12

O2

 

12

 

Pulmonary

10

80

 

80

10

 

 

 

 

 

PO2

 

 

 

8

PCO2

8

60

 

60

 

6

CO2

40

6

 

5.8

 

 

 

Plate

 

40

 

 

 

 

 

ca. 0.75s

 

 

 

 

 

 

 

 

B. Impairment of alveolar gas exchange

 

 

 

 

 

Expiration

CO2

Inspiration

 

 

 

 

 

 

O2

 

 

 

1

 

 

Bronchial system

 

 

 

Normal alveolar

 

 

 

 

 

 

ventilation and perfusion

 

 

 

 

 

 

 

 

 

Extra-alveolar shunt

 

From pulmonary

 

 

 

 

 

 

artery

 

 

4

 

 

 

 

 

 

Non-ventilated alveolus

 

2

 

 

 

 

 

 

Absent blood flow

Functional

 

Alveolar shunt

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dead space

 

 

 

 

 

 

 

 

 

 

To

 

3

 

 

 

 

pulmonary veins

121

Diffusion barrier

 

 

 

 

 

 

 

 

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

 

Pulmonary Blood Flow,

 

 

 

 

 

Ventilation–Perfusion Ratio

 

 

 

 

 

Neglecting the slight amount of blood that

 

 

reaches the lungs via the bronchial arteries,

 

 

 

 

 

 

 

.

 

 

 

 

 

the mean pulmonary perfusion (Q), or blood

 

 

flow to the lungs, is equal to the cardiac output

 

 

(CO = 5–6 L/min). The pulmonary arterial pres-

 

 

sure is about 25 mmHg in systole and 8 mmHg

 

 

 

 

 

 

 

 

in diastole, with a mean (P) of about 15 mmHg.

 

 

 

decreases to about 12 mmHg (Pprecap) in the

 

 

P

 

 

precapillary region (up to the origin of the pul-

 

 

monary capillaries) and about 8 mmHg in the

 

 

postcapillary region (Ppostcap). These values

 

 

apply to the areas of the lung located at the

 

 

level of the pulmonary valve.

 

 

 

Respiration

Uneven distribution of blood flow within the lung

(!A). Due to the additive effect of hydrostatic pres-

 

 

 

sure (up to 12 mmHg), Pprecap increases in blood ves-

 

 

sels below the pulmonary valves (near the base of the

 

lung) when the chest is positioned upright. Near the

5

 

apex of the lung, Pprecap decreases in vessels above

 

the pulmonary valve (!A, zone 1). Under these con-

 

 

ditions, Pprecap can even drop to subatmospheric

 

levels, and the mean alveolar pressure (PA) is at-

 

mospheric and can therefore cause extensive capil-

 

lary compression (PA ! Pprecap ! Ppostcap;

 

 

.

 

!A ). Q per

 

unit of lung volume is therefore very small. In the

 

 

central parts of the lung (!A, zone 2), luminal nar-

 

rowing of capillaries can occur at their venous end, at

 

least temporarily (Pprecap ! PA ! Ppostcap), while the

 

 

area near the base of the lung (!A, zone 3) is con-

 

 

tinuously supplied with blood (Pprecap ! Ppostcap ! PA).

 

.

 

 

 

 

 

 

 

 

 

 

Q per unit of lung volume therefore decreases from

 

 

the apex of the lung to the base (!A, B, red line).

 

 

 

Uneven

distribution of

alveolar

ventilation.

 

 

 

 

.

 

 

 

 

 

 

 

 

Alveolar ventilation (VA) per unit of lung volume also

 

increases from the apex to the base of the lungs due

 

 

to the effects of gravity (!B , orange line), although

 

 

 

 

.

 

 

 

. .

 

not as much as Q. Therefore, the

VA/Q ratio

 

 

decreases from the apex to the base of the lung

 

(!B, green curve and top scale).

 

 

 

 

. .

 

 

 

. .

 

 

 

 

 

VA/Q imbalance. The mean VA/Q for the entire

 

 

lung is 0.93 (!C2). This value is calculated

 

 

 

 

 

 

 

 

.

 

(ca. 5.6

 

 

from the mean alveolar ventilation VA

 

 

 

 

 

 

 

.

 

 

 

 

 

L/min) and total perfusion Q (ca. 6 L/min),

 

 

which is equal to the cardiac output (CO).

 

 

Under extreme conditions in which one part of

 

 

 

 

 

 

 

. .

 

 

 

 

 

the lung is not ventilated at all, VA/Q = 0 (!C1).

 

 

In the other extreme in which blood flow is ab-

 

. .

 

 

 

 

 

 

 

 

sent (VA/Q approaches infinity; !C3), fresh air

122

 

conditions

will prevail

in the

 

alveoli

 

 

 

 

 

 

 

 

. .

 

 

(functional dead space; !p. 120). VA/Q can

vary tremendously—theoretically, from 0 to ". In this case, the PAO2 will fluctuate between mixed venous PVO2 and PIO2 of (humidified). . fresh air (!D). In a healthy upright lung, VA/Q decreases greatly (from 3.3 to 0.63) from apex

to base at rest (!B, green line); PAO2 (PACO2) is therefore 17.6 (3.7) kPa in the “hyperventi-

lated” lung apex, 13.3 (5.3) kPa in the normally ventilated central zone, and 11.9 (5.6) kPa in the hypoventilated lung base. These changes are less pronounced. during physical exercise because Q also increases in zone 1 due to the corresponding. . increase in Pprecap.

VA/Q imbalance decreases the efficiency of the lungs for gas exchange. In spite of the high PAO2 at the apex of the lung (ca. 17.6 kPa; !D, right panel) and the fairly.normal mean PAO2 value, the relatively small Q fraction. of zone 1 contributes little to the total Q of the pulmonary veins. In this case, PaO2 # PAO2 and an alve- olar–arterial O2 difference (AaDO2) exists (normally about 1.3 kPa). When. a. total arteriovenous shunt is present (VA/Q = 0), even oxygen treatment will not help the patient, because it would not reach the pulmonary capillary bed (!C1).

Hypoxic vasoconstriction regulates alveolar perfusion. and. prevents the development of extreme VA/Q ratios. When the PAO2 decreases sharply, receptors in the alveoli emit local signals that trigger constriction of the supplying blood vessels. This throttles shunts in poorly ventilated or non-ventilated regions of the lung, thereby routing larger quantities of blood for .gas.exchange to more productive regions.

VA/Q imbalance can cause severe complications in many lung diseases. In shock lung. , for example, shunts can comprise 50% of Q. Lifethreatening lung failure can quickly develop if a concomitant pulmonary edema, alveolar diffusion barrier, or surfactant disorder exists (!p. 118).

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

A. Regional blood flow in the lung (upright chest position)

Alveolus

 

 

 

 

 

 

lung

 

 

 

Zone 1

 

 

 

 

 

 

 

 

 

PA

> Pprecap > Ppostcap

 

 

 

 

 

 

 

 

of

 

Pulmonary

 

 

 

 

 

Pulmonary

 

 

 

 

 

 

 

 

 

 

Level

 

 

 

 

 

artery

 

 

 

 

 

 

vein

 

 

 

Zone 2

 

 

 

 

 

 

 

 

 

 

 

Pprecap > PA > Ppostcap

 

 

Lung

 

 

 

 

 

 

 

 

Zone 3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pprecap > Ppostcap > PA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pprecap

PA

Ppostcap

 

 

 

 

Perfusion Q

 

 

 

 

 

 

 

 

 

 

B. Regional perfusion and

 

 

 

 

 

 

·

 

·

C. Effect of ventilation-perfusion ratio (VA/Q)

 

ventilation of lung

 

on partial pressures in lung

 

 

 

 

 

 

 

 

 

Pressures in kPa

Ambient air: PO2 = 20, PCO2 = 0

0

 

VA/Q

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Apex

 

 

 

 

VA = 0

 

VA

 

 

VA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

number

 

 

 

Q

PO2

= 5.33

PO2 =13.33

PO2

= 20

 

 

 

 

PCO2 = 6.13

PCO2 = 5.33

PCO2 =

0

 

 

 

Ventilation VA

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rib

 

 

Perfusion Q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

Q

 

 

 

 

Q

 

 

Q = 0

 

 

 

 

 

 

 

5.6

 

 

 

Base

 

 

 

 

VA

= 0

VA

=

1

VA

 

 

 

 

 

 

 

6

 

 

0.5

 

1.0

1.5

Q

Q

 

Q

 

 

0

 

1

 

2

 

 

 

3

 

 

 

 

(L/min per L lung)

 

 

 

 

 

 

Q and

VA

Not ventilated

Normal

 

 

Not perfused

 

 

 

 

 

 

 

. . Plate 5.9 Pulmonary Blood Flow, VA–Q Ratio

D. Regional parameters of lung function

Ambient air

 

 

 

 

 

 

 

 

 

 

0.07

0.24

0.07

3.3

17.6

3.7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.93

13.3

5.3

 

 

 

 

 

 

 

 

 

 

 

0.13

0.82

1.29

0.63

11.9

5.6

 

 

Mixed

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

venous blood

 

 

 

 

 

 

 

 

 

(L/min)

 

(kPa)

 

 

 

8

 

 

 

 

 

 

 

 

volume

 

 

 

(kPa)

6

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

lung

 

 

 

 

 

 

CO

2

 

 

 

 

 

 

 

 

of

 

 

 

 

 

 

P

 

 

 

 

 

 

 

 

Fraction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

·

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

A

·

/QA

O

CO

 

 

6

8

10

12

14

16

18

20

·

·

PA

PA

 

 

V

Q

V

123

 

 

 

 

PO2 (kPa)

 

 

 

 

 

 

 

End-capillaries

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A, B, C, D after West et al.)

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

CO2 Transport in Blood

 

Carbon dioxide (CO2) is the end-product of

 

energy metabolism (!p. 228). CO2 produced

 

by cells of the body undergoes physical dissolu-

 

tion and diffuses into adjacent blood capillar-

 

ies. A small portion of CO2 in the blood remains

 

dissolved, while the rest is chemically bound in

 

form of HCO3and carbamate residues of

 

hemoglobin (!A , lower panel, blue arrows;

 

!arteriovenous CO2 difference given in the

 

table). Circulating CO2-loaded blood reaches

 

the pulmonary capillaries via the right heart.

 

CO2 entering the pulmonary capillaries is re-

 

leased from the compounds (!A, red arrows),

 

diffuses into the alveoli, and is expired into the

Respiration

atmosphere (!A and p. 106).

 

The enzyme carbonic anhydrase (carbonate

dehydratase) catalyzes the reaction

 

HCO3+ H+

CO2 + H2O

 

in erythrocytes (!A5, 7). Because it acceler-

ates the establishment of equilibrium, the

5

short contact time (!1 s) between red blood

 

 

cells and alveolus or peripheral tissue is suffi-

 

cient for the transformation CO2

HCO3.

 

CO2 diffusing from the peripheral cells (!A,

 

bottom panel: “Tissue”) increases PCO2 (approx.

 

5.3 kPa = 40 mmHg in arterial blood) to a mean

 

venous PCO2 of about 6.3 kPa = 47 mmHg. It also

 

increases the concentration of CO2 dissolved in

 

plasma. However, the major portion of the CO2

 

diffuses into red blood cells, thereby increas-

 

ing their content of dissolved CO2. CO2 (+ H2O)

 

within the cells is converted to HCO3(!A5, 2)

 

and hemoglobin carbamate (!A3). The HCO3

 

concentration in erythrocytes therefore be-

 

comes higher than in plasma. As a result, about

 

three-quarters of the HCO3ions exit the

 

erythrocytes by way of an HCO3/Cl anti-

 

porter. This anion exchange is also called Ham-

 

burger shift (!A4).

 

 

H+ ions are liberated when CO2 in red cells

 

circulating in the periphery is converted to

 

HCO3and hemoglobin (Hb) carbamate.

 

Bicarbonate formation:

 

 

CO2 + H2O

HCO3+ H+,

[5.4]

 

Hemoglobin carbamate formation:

 

Hb–NH2 + CO2

Hb–NH–COO + H+. [5.5]

 

Hemoglobin (Hb) is a key buffer for H+ ions in

124

the red cells (!A6; see also p. 140, “Non-bicar-

bonate buffers”). Since the removal of H+ ions

in reactions 5.4 and 5.5 prevents the rapid establishment of equilibrium, large quantities of CO2 can be incorporated in HCO3and Hb carbamate. Deoxygenated hemoglobin (Hb) can take up more H+ ions than oxygenated hemoglobin (Oxy-Hb) because Hb is a weaker acid (!A). This promotes CO2 uptake in the peripheral circulation (Haldane effect) because of the simultaneous liberation of O2 from erythrocytes, i.e. deoxygenation of Oxy-Hb to Hb.

In the pulmonary capillaries, these reactions proceed in the opposite direction (!A, top panel, red and black arrows). Since the PCO2 in alveoli is lower than in venous blood, CO2 diffuses into the alveoli, and reactions 5.4 and 5.5 proceed to the left. CO2 is released from HCO3and Hb carbamate whereby H+ ions (released from Hb) are bound in both reactions (!A7, A8), and the direction of HCO3/Cl exchange reverses (!A9). Reoxygenation of Hb to Oxy-Hb in the lung promotes this process by increasing the supply of H+ ions (Haldane effect).

CO2 distribution in

blood

(mmol/L

blood,

1 mmol = 22.26 mL CO2)

 

 

 

 

 

 

 

 

Dis-

HCO3Carba-

Total

 

solved

 

mate

 

 

CO2

 

 

 

 

 

 

 

 

Arterial blood:

 

 

 

 

Plasma*

0.7

13.2

0.1

14.0

Erythrocytes**

0.5

6.5

1.1

8.1

Blood

1.2

19.7

1.2

22.1

 

 

 

 

Mixed venous blood:

 

 

 

Plasma*

0.8

14.3

ca. 0.1

15.2

Erythrocytes**

0.6

7.2

1.4

9.2

Blood

1.4

21.5

1.5

24.4

 

 

Arteriovenous CO2 difference in blood

 

 

0.2

1.8

0.3

2.3

Percentage of total arteriovenous difference

 

9%

78%

13%

100%

 

 

 

* Approx 0.55 L

plasma/L blood; ** ca.

0.45 L

erythrocytes/L blood

 

 

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

A. CO2 transport in blood

 

 

 

 

 

 

 

 

Expelled from lung

 

 

 

 

 

 

 

 

 

 

 

Oxy-

 

8

Hb

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CO2

 

Hb

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NH2

 

 

NH

COO

 

 

Blood

 

 

CO2

 

 

 

 

 

 

 

Alveolus

 

 

 

O2

H+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in

 

 

Oxy-

 

 

 

 

Hb

 

-Transport

 

 

 

 

 

 

H

 

 

 

Hb

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In lung

 

 

 

 

 

 

 

 

 

2

 

H2O

 

 

H+

 

 

 

 

CO

 

 

 

 

 

 

 

 

 

 

 

 

7

 

 

 

9

 

5.10

 

 

 

 

 

HCO3

 

HCO3

 

 

CO2

 

 

 

 

 

 

Carbonic anhydrase

 

 

 

 

Plate

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Cl

 

 

 

 

 

 

 

 

 

 

 

 

 

Erythrocyte

 

 

 

 

 

In plasma

 

 

 

 

 

 

 

 

 

 

 

 

In periphery

 

 

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bicarbonate formation

CO2

Carbonic anhydrase

HCO3

 

HCO3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4

 

 

 

 

 

 

 

2

Cl

 

 

 

 

H2O

 

 

 

 

 

 

 

H+

 

 

 

 

 

 

 

Oxy-

 

 

 

6

 

Hb

 

 

Hemoglobin

 

 

 

 

 

 

H

 

 

 

Hb

 

 

 

 

 

 

 

as buffer

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

 

 

 

 

O2

 

 

H+

 

 

 

 

 

Hemoglobin

 

Oxy-

 

 

Hb

 

 

 

 

 

carbamate

 

 

 

3

 

 

 

 

 

Hb

 

 

 

 

 

 

formation

 

 

 

 

 

 

 

 

 

 

NH2

 

 

NH

COO

 

 

 

CO2

 

CO2

 

 

Hemoglobin

 

 

 

 

 

 

 

carbamate

 

 

 

 

1

Tissue

 

 

 

 

 

 

 

 

125

 

 

 

 

 

 

 

 

 

Metabolism

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

5 Respiration

126

CO2 Binding in Blood, CO2 in CSF

The total carbon dioxide concentration (= chemically bound “CO2” + dissolved CO2) of mixed venous blood is about 24–25 mmol/L; that of arterial blood is roughly 22–23 mmol/L. Nearly 90% of this is present as HCO3(!A, right panel, and table on p. 124). The partial pressure of CO2 (PCO2) is the chief factor that determines the CO2 content of blood. The CO2 dissociation curve illustrates how the total CO2 concentration depends on PCO2 (!A).

The concentration of dissolved CO2, [CO2], in plasma is directly proportional to the PCO2 in plasma and can be calculated as follows:

[CO2] = αCO2 ! PCO2 (mmol/L plasma

 

or mL/L plasma),

[5.6]

where αCO2 is the (Bunsen) solubility coefficient for CO2. At 37 !C,

αCO2 = 0.225 mmol ! L–1 ! kPa–1,

After converting the amount of CO2 into volume CO2 (mL = mmol ! 22.26), this yields

αCO2 = 5 mL ! L–1 ! kPa–1.

The curve for dissolved CO2 is therefore linear (!A, green line).

Since the buffering and carbamate formation capacities of hemoglobin are limited, the relation between bound “CO2and PCO2 is curvilinear. The dissociation curve for total CO2 is calculated from the sum of dissolved and bound CO2 (!A, red and violet lines).

CO2 binding with hemoglobin depends on the degree of oxygen saturation (SO2) of hemoglobin. Blood completely saturated with O2 is not able to bind as much CO2 as O2-free blood at equal PCO2 levels (!A, red and violet lines). When venous blood in the lungs is loaded with O2, the buffer capacity of hemoglobin and, consequently, the levels of chemical CO2 binding decrease due to the Haldane effect (!p. 124). Venous blood is never completely void of O2, but is always O2-satu- rated to a certain degree, depending on the degree of O2 extraction (!p. 130) of the organ in question. The SO2 of mixed venous blood is about 0.75. The CO2 dissociation curve for SO2 = 0.75 therefore lies between those for SO2 = 0.00 and 1.00 (!A, dotted line). In arterial blood,

PCO2 !5.33 kPa and SO2 !0.97 (!A, point a). In mixed venous blood, PCO2 !6.27 kPa and SO2

!0.75 (!A, point V). The normal range of CO2

dissociation is determined by connecting these two points by a line called “physiologic CO2 dissociation curve.”

The concentration ratio of HCO3to dissolved CO2 in plasma and red blood cells differs (about 20 : 1 and 12 : 1, respectively). This reflects the difference in the pH of plasma (7.4) and erythrocytes (ca. 7.2) (!p. 138ff.).

CO2 in Cerebrospinal Fluid

Unlike HCO3and H+, CO2 can cross the bloodcerebrospinal fluid (CSF) barrier with relative

ease (!B1 and p. 310). The PCO2 in CSF therefore adapts quickly to acute changes in the PCO2

in blood. CO2-related (respiratory) pH changes in the body can be buffered by non-bicarbonate buffers (NBBs) only (!p. 144). Since the concentration of non-bicarbonate buffers in CSF is very low, an acute rise in PCO2 (respiratory acidosis; !p. 144) leads to a relatively sharp decrease in the pH of CSF (!B1, pH""). This decrease is registered by central chemosensors (or chemoreceptors) that adjust respiratory activity accordingly (!p. 132). (In this book, sensory receptors are called sensors in order to distinguish them from hormone and transmitter receptors.)

The concentration of non-bicarbonate buffers in blood (hemoglobin, plasma proteins) is high. When the CO2 concentration increases, the liberated H+ ions are therefore effectively buffered in the blood. The actual HCO3concentration in blood then rises relatively slowly, to ultimately become higher than in the CSF. As a result, HCO3diffuses (relatively slowly) into the CSF (!B2), resulting in a renewed increase in the pH of the CSF because the HCO3/CO2 ratio increases (!p. 140). This, in turn, leads to a reduction in respiratory activity (via central chemosensors), a process enhanced by renal compensation, i.e., a pH increase through HCO3retention (!p. 144). By this mechanism, the body ultimately adapts to chronic elevation in PCO2— i.e., a chronically elevated PCO2 will no longer represent a respiratory drive (cf. p. 132).

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

A. CO2 dissociation curve

 

 

 

 

 

 

 

 

CO2 concentration

 

 

 

O2 saturation = 0.00

 

 

 

of blood (mmol/L)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30

 

 

 

 

-

 

 

 

 

 

 

 

 

Normal range: a–v

-

 

 

 

 

CSF

 

 

 

 

 

 

v

 

 

 

 

25

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total CO2 in blood

 

in

 

 

mixed venous

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

(=100%)

 

 

 

 

 

 

 

 

 

CO

 

 

 

 

 

 

 

 

 

 

20

 

arterial

 

 

 

O2 saturation = 1.00

Plasma-HCO3

 

 

 

 

 

 

Binding in Blood,

 

 

 

 

 

CO2

 

 

 

 

 

 

 

 

 

2

 

 

 

 

a

 

 

 

 

 

 

15

 

 

 

 

 

 

 

 

60%

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29%

10

 

 

 

arterial

venousmixed

 

 

 

BoundCO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dissolved CO2

 

 

2

5

 

 

 

 

 

 

Carbamate

 

CO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RBC-HCO3

5.11

0

 

 

 

 

 

 

 

 

 

 

0

 

2

4

 

6

 

8

10

P

 

 

 

kPa

 

Plate

 

 

 

 

 

 

 

 

 

CO2

 

0

10

20

30

40

 

50

60

70

80

 

 

 

 

 

 

 

 

 

 

mmHg

 

 

 

 

 

B. Effect of CO2 on pH of CSF

 

 

 

 

Example:

 

1 Acute

 

2 Chronic

Respiratory acidosis

 

 

 

 

 

 

 

 

Renal

 

 

 

 

 

 

compensation

 

CO2

 

 

HCO3

CO2

HCO3

 

 

 

 

 

 

Rapid diffusion

H2O

H+

Blood

H2O

H+

 

 

 

 

Blood-CSF

 

NBB

 

 

diffusion

barrier

pH

 

NBB

 

 

 

 

 

 

 

 

 

 

pH

 

 

 

 

 

 

Slow

CO2

 

 

HCO3

 

 

 

 

 

H+

 

CO2

HCO3

 

 

H2O

CSF

 

 

 

 

 

 

 

H2O

H+

 

 

 

pH

NBB

 

pH (

)

 

 

 

 

Central

 

 

 

 

 

Central

 

 

chemoreceptors

 

 

 

 

 

 

 

 

chemoreceptors

 

 

 

Strong signal for

 

Weak signal

127

 

 

respiratory regulation

 

 

 

 

(adaptation)

 

 

 

 

 

 

 

Despopoulos, Color Atlas of Physiology © 2003 Thieme

All rights reserved. Usage subject to terms and conditions of license.

Соседние файлы в папке книги студ