
- •Лекция №1
- •Механизмы теплопереноса
- •Тепловые балансы
- •Тепловое излучение
- •Теплопроводность
- •Теплопроводность плоской стенки
- •Уравнение теплопроводности цилиндрической стенки
- •Лекция №2
- •Конвективный теплообмен
- •Тепловое подобие
- •Теплоотдача при свободном движении жидкости
- •Теплоотдача при вынужденном движении жидкостей
- •Теплоотдача при изменении агрегатного состояния среды
- •Теплоотдача при конденсации пара
- •Теплоотдача при кипении жидкости
- •Коэффициент теплоотдачи при кипени определяется
- •Лекция №3
- •Теплопередача
- •Средняя движущая сила тепловых процессов.
- •Промышленные способы подвода и отвода тепла
- •В иды теплоносителей
- •Греющие теплоносители
- •2) Воздух
- •Лекция №4
- •Теплообменные аппараты (тоа), классификация, конструкционные особенности
- •П ерегородки в межтрубном пространстве
- •К омпоновка труб в корпусе
- •Змеевиковые теплообменники
- •Теплообменники с оребренными трубами
- •Методика теплового расчета
- •I Проектировочный расчет
- •II Уточненный или проверочный расчет
- •III Технико-экономический расчет.
- •IV Выбор оптимального варианта. Лекция №5
- •Основные понятия
- •Виды выпаривания
- •Физическая сущность процесса выпаривания
- •Температура кипения раствора и температурные потери
- •Классификация выпарных аппаратов
- •Выпарные аппараты с естественной циркуляцией
- •Аппараты с принудительной циркуляцией.
- •Лекция №6
- •Принципиальная схема противоточной двух корпусной выпарной установки
- •Противоток
- •Комбинированная схема выпаривания
- •Материальный баланс многокорпусной выпарной установки
- •Расчет выпарного аппарата
- •Уравнение теплового баланса в развернутом виде Расход греющего пара
- •Выбор числа корпусов
- •Вспомогательное оборудование выпарной установки
- •Конденсатор барометрический
- •Модуль 4 массообменные процессы Лекция №7
- •Равновесие массообменных систем
- •Основные законы массопередачи
- •III Закон массопроводности
- •Лекция №8
- •Зависимость между коэффициентами массопередачи и массоотдачи
- •Основное уравнение массопередачи
- •Зависимость между коэффициентами массопередачи и массоотдачи
- •Средняя движущая сила массообменных процессов
- •Подобие массообменных процессов
- •Методы расчета массообменных процессов
- •Расчет диаметра колонны
- •Расчет высоты колонны
- •I Аппараты с непрерывным контактом фаз
- •II Аппараты со ступенчатым контактом фаз
- •Лекция №9
- •Кинетика процесса абсорбции Промышленные схемы абсорбции
- •Требования к абсорбентам
- •Материальный баланс абсорбции
- •Уравнение рабочей линии Противоток
- •Прямоток
- •Кинетика процесса абсорбции
- •Промышленные схемы абсорбции
- •Многоступенчатые схемы абсорбции
- •Лекция №10
- •Конструкции абсорберов
- •Требования к абсорберам
- •Насадочные и тарельчатые колонные аппараты
- •Режимы работы насадочных аппаратов
- •Режимы работы тарельчатых апаратов
- •Расчет абсорберов
- •Определение числа теоретических ступеней (теоретических тарелок)
- •Лекция №11
- •Описание схемы процесса ректификации.
- •Под атмосферным давлением
- •Ректификация – процесс разделения жидких смесей путем многократного противоточного взаимодействия жидкости и пара не находящихся в термодинамическом равновесии.
- •Описание схемы процесса ректификации
- •Тепловой расчет колонны
- •Лекция №13
- •Кинетика экстракции
- •Промышленные схемы экстракции
- •Конструкции экстрактов
- •Расчет экстракторов
- •Способы повышения интенсивности процесса
- •Основы выбора экстрактора
- •Лекция №14 Сушка. Общие сведения.
- •Основные свойства влажного воздуха
- •Форма связи влаги с материалом
- •Лекция №15 Материальный баланс сушки
- •Тепловой баланс конвективных сушилок
- •Сушка с многократным промежуточным подогревом воздуха
- •Сушка с частичным возвратом отработанного воздуха
- •Кинетика процесса сушки
- •Расчет сушилок
- •И нтенсификация процесса
- •Лекция № 16 Кристаллизация
- •Равновесие процесса кристаллизации
- •Кинетика процесса
- •Конструкции аппаратов
- •Лекция № 17
- •2. Основные отличия процессов и аппаратов бт от процессов и аппаратов химтехнологии
- •3. Классификация реакторов по конструктивным признакам и по организации перемешивания
- •4. Характеристика аппаратов с подводом энергии через газовую фазу
- •5. Общая характеристика реакторов с подводом энергии через жидкость
- •6. Общая характеристика реакторов с комбинированным подводом энергии
- •7. Возможности аппаратов колонного типа по выбору и оптимизации режимов ферментации.
- •8. Характеристика секционных колонных аппаратов
- •9. Газлифтный реактор трубчатого тип.
- •10. Аппараты для переработки концентрированных гидролизных сред
- •Лекция № 18 Массообмен в процессах ферментации. Аппаратура для проведения процессов ферментации
- •11. Аэробная очистка сточных вод в природных условиях. Методы. Сооружения.
- •12. Очистка сточных вод в аэротенках
- •14. Реакторы для процессов с использованием иммобилизованных катализаторов
- •15. Гидролиз растительного сырья. Преколяция
- •16. Мембранные методы выделения, концентрирования и обогащения продуктов биосинтеза
- •17. Особенности стерилизации разных субстратов. Горячая и холодная стерилизация
- •18. Аппаратура и способы стерилизации воздуха
Курс
«Процессы и аппараты биотехнологии»
Преподаватель:
Орлова Наталья Алексеевна
кандидат технических наук,
доцент кафедры ТГВ ПАХТ
Структура курса.
В общей сложности структуру курса ПАБТ можно представить схемой:
Теоретические основы процессов мы будете изучать в первом модуле, а типовые процессы БТ соответственно в 2,3,4, завершающим этапом нашего курса будет курсовой проект, в котором Вы должны будете воплотить все знания полученные в течении года..
4 лабораторные работы - вес 0,1
Расчетное задание – расчет теплообменников - вес 0,3
2 контрольные работы: на 6 неделе и на 13 неделе - вес 0,1 каждая
Лекция №1
Общие сведения о процессах переноса тепла.
Три способа распространения тепла.
Тепловые балансы.
Тепловое излучение
Теплопроводность плоской и цилиндрической стенок
Теплопередача – наука о самопроизвольном переносе тепла от тел с большей температурой к телам с меньшей температурой (в узком смысле, теплопередача – это перенос тепла от одной среды к другой через разделяющую их твердую теплопроводящую поверхность).
Оба вещества, участвующих в теплопередаче, называют теплоносителями. Иногда в случае возможности смешения теплоносителей теплопередачу осуществляют непосредственным соприкосновением этих теплоносителей.
Процессы, скорость которых определяется скоростью отвода или подвода тепла, являются тепловыми.
Большое значение ТП объясняется следующим:
1 Серцевиной (основой) любого БТП является химическая реакция, которая протекает с выделением или поглощением тепла, т.е. в соответствии с принципом Ле-Шателье (давайте вспомним, как звучит этот принцип), управление такими процессами сводится к подводу или отводу тепла; например, растворение большинства солей (NaCl) сопровождается поглощением тепла.
2 Стоимостью тепловой энергии. Себестоимость тепловой продукции составляет 20-80%, т.е. характер протекания тепловых процессов оказывает существенное влияние на экономические показатели деятельности предприятий.
Особенности протекания ТП: широкий диапазон температур, в котором должен быть обеспечен подвод тепла; изменение агрегатного состояния вещества (процессы возгонки, конденсации, плавления, испарения).
Особенностью протекания тепловых процессов является широкий диапазон температур, в котором должен быть обеспечен подвод тепла. К тепловым процессам относятся нагревание, охлаждение, конденсация, испарение.
Нагревание – повышение температуры перерабатываемых материалов путем подвода к ним тепла.
Охлаждение – понижение температуры перерабатываемых материалов путем отвода от них тепла.
Конденсация – сжижение паров какого-либо вещества путем отвода от них тепла.
Испарение – перевод в парообразное состояние какой-либо жидкости путем подвода к ней тепла. Частным случаем испарения является весьма широко распространенный в химической технике процесс выпаривания – концентрирования при кипении растворов твердых нелетучих веществ путем удаления жидкого летучего растворителя в виде паров.
Самопроизвольный перенос тепла протекает при условии неравенства температур, рассматриваемых в точках пространства или данного тела.
Механизмы теплопереноса
В связи с тем, что перенос теплоты является сложным процессом, его расчленяют на более простые явления. Различают три вида переноса теплоты: тепловое излучение, теплопроводность, и конвекция.
1. Квантовый уровень – тепловое излучение – перенос тепла с помощью электромагнитных волн, источниками которых являются колебания заряженных частиц в рассматриваемом объеме. Все тела способны излучать энергию, которая поглощается другими телами и снова превращается в тепло. Таким образом, осуществляется лучистый теплообмен; он складывается из процессов лучеиспускания и лучепоглощения
2. Молекулярный уровень – теплопроводность – представляет собой перенос тепла вследствии беспорядочного (теплового) движения микрочастиц, непосредственно соприкасающихся друг с другом. Это движение может быть либо движением самих молекул (газы, капельные жидкости), либо колебанием атомов (в кристаллической решетке твердых тел), или диффузией свободных электронов (в металлах). В твердых телах теплопроводность является обычно основным видом распространения тепла.
3. Макроуровень – конвекция – называется перенос тепла вследствие движения и перемешивания макроскопических объемов газа или жидкости. Перенос тепла возможен в условиях естественной, или свободной конвекции, обусловленной разностью плотностей в различных точках объема жидкости (газа), возникающей вследствие разности температур в этих точках или в условиях вынужденной конвекции при принудительном движении всего объема жидкости, например в случае перемешивания ее мешалкой.
Возможны любые сочетания из трех указанных элементарных видов теплообмена. Например, передача теплоты от факела горящего топлива к наружном поверхностям стенок труб осуществляется лучеиспусканием, от горячих газов к этим поверхностям – конвективной теплоотдачей, через стенки труб – теплопроводностью, а от внутренних стенок к воде – конвективной теплоотдачей.