Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Конспект лекций 2014 Прил. 1.doc
Скачиваний:
747
Добавлен:
15.02.2016
Размер:
2.79 Mб
Скачать

2. Физические вредные и опасные факторы и защита от них.

Подавляющее большинство физических вредных и опасных производственных факторов (ВОПФ) относится к механическим, колебательным (вибрации), акустическим (ультразвуковые, звуковые и инфразвуковые колебания), или же к электромагнитным (все виды излучений) процессам, а также параметрам микроклимата производственных помещений или климатических условий местности, на которой ведутся работы.

Геологоразведочные работы в том числе геологосъемочные, поисковые, геофизические, гидрогеологические, инженерно-геологические, топографические, тематические, буровые и другие, неизбежно сопровождаются воздействием на работающих специалистов большого числа внешних физических факторов.

Подавляющее большинство из них относится к колебательным (вибрации), акустическим (ультразвуковые, звуковые и инфразвуковые колебания), или же к электромагнитным (все виды излучений) процессам.

Рассмотрим более подробно некоторые наиболее распространенные вредные и опасные производственные факторы каждой из этих групп.

а) Вибрация это малые механические колебания, возникающие в упругих телах, находящихся под воздействием переменного физического поля. Вибрация всегда существует там, где есть движущиеся механизмы или их детали.

По способу передачи различают следующие виды вибрации

общую вибрацию, передающуюся через опорные поверхности на тело сидящего или стоящего человека;

локальную вибрацию, передающуюся через руки или ноги человека, а также через предплечья, контактирующие с вибрирующими поверхностями.

В зависимости от источника возникновения различают следующие виды вибраций:

локальная вибрация, передающаяся человеку от ручного механизированного (с двигателями) инструмента;

локальная вибрация, передающаяся человеку от ручного немеханизированного инструмента;

общая вибрация 1 категории — транспортная вибрация, воздействующая на человека на рабочих местах транспортных средств, движущихся по местности, дорогам и пр.' Пример: тракторы, грузовые автомобили;

общая вибрация 2 категории — транспортно-технологическая вибрация, воздействующая на человека на рабочих местах машин, перемещающихся по специально подготовленным поверхностям производственных помещений и т. п. Пример: краны, напольный производственный транспорт;

общая вибрация 3 категории — технологическая вибрация, воздействующую на человека на рабочих местах стационарных машин или передающуюся на рабочие места, не имеющие источников вибрации. Пример: станки, литейные машины.

общая вибрация в жилых помещениях и общественных зданиях от внешних источников. Пример: вибрация от проходящего трамвая.

общая вибрация в жилых помещениях и общественных зданиях от внутренних источников. Пример: лифты, холодильники.

Вибрация возникает в самых разнообразных технических устройствах вследствие несовершенства их конструкции, неправильной эксплуатации, внешних условий (например, рельеф дорожного полотна для автомобилей), а также специально генерируемая вибрация.

Причиной усиления вибрации может быть резонанс.

Для бурения шпуров и скважин используют механические и физические способы бурения. Из механических способов бурения известны способы ударного, вращательного, вибрационного, ударно-вращательного, а также комбинированного бурения.

При бурении скважин причиной вибрации являются возникающие при работе машин и агрегатов неуравновешенные силовые воздействия.

При проведении работ методом вибробурения интенсивность колебаний установок существенно возрастает.

При работах с невзрывными источниками сейсмических колебаний (газодинамическими, электродинамическими, пневматическими, вибрационными и др.) возможны воздействия на значительном удалении от установок.

Механические вибрационные колебания воспринимаются всеми тканями организма, но главным образом нервной и костной, причем последняя является хорошим проводником и резонатором вибрации. Наиболее чувствительны к вибрации нервные окончания, прежде всего рецепторы кожного покрова дистальных отделов рук, подошвенной поверхности стоп.

В передаче вибрационных раздражений участвует вестибулярный аппарат.

В основе морфологических, функциональных и биохимических сдвигов в организме при воздействии вибрации лежат возникающие в тканях переменные напряжения (сжатие, растяжение, сдвиг, кручение или изгиб).

В организме человека имеются механизмы, охраняющие жизненно важные органы от сотрясения. При длительном воздействии вибрации этот защитный барьер может нарушаться, что приводит к возникновению многообразных изменений.

При вибрационной болезни страдает весь организм в целом, любые клетки, ткани и органы. В первую очередь наблюдается поражение нервной системы, периферических и центральных отделов (церебрастения, полиневриты), сердечно -сосудистой системы (ангиоспазм периферических и глубоких сосудов), опорно-двигательного аппарата (эпикондилиты, стилоидиты, тендовагиниты, периартриты), желудочно-кишечного тракта (хронический гастрит).

Последствия воздействия вибрации на человека зависят от мощности колебательного процесса в зоне контакта и времени воздействия. Кроме того, значительно повышаются опасные последствия вибрации, если совпадают частоты воздействующих колебаний с собственными колебаниями внутренних органов.

Область резонанса, например, для человека соответствует 20...30 Гц при вертикальных вибрациях и 1,5...2 Гц - при горизонтальных. Расстройство же зрительных восприятий проявляется в частотном диапазоне между 60 и 90 Гц, что соответствует резонансу глазных яблок. Для органов грудной клетки и брюшной полости резонансными являются частоты в диапазоне от 3 до 3,5 Гц. Для всего тела в положении сидя резонанс наступает на частотах 4 - 6 Гц.

У рабочих вибрационных профессий отмечяются головокружение, расстройство координации движения, симптомы укачивания, вестибулярная неустойчивость, снижение остроты зрения, потемнение в глазах.

Локальной вибрации подвергаются главным образом люди, работающие с ручным механизированным инструментом. Локальная вибрация вызывает спазмы сосудов кистей, предплечий, нарушая снабжение конечностей кровью. Одновременно колебания действуют на нервные окончания, мышечные и костные ткани, вызывают снижение кожной чувствительности, отложение солей в суставах пальцев.

Защита от производственных вибраций

Защита организма человека от воздействия вибрации осуществляется техническими, организационными и санитарно-гигиеническими мероприятиями.

Технические мероприятия предполагают:

использование машин, возбуждающих минимальные динамические нагрузки (использование электродвигателей вместо двигателей внутреннего сгорания);

применение антивибрационных смазок;

уменьшение интенсивности возмущающих сил в источнике их возникновения;

ослабление вибрации на пути ее распространения через опорные связи от источника к другим машинам и строительным конструкциям (между виброактивной машиной и фундаментом устанавливаются виброизолирующие и вибропоглощающие устройства).

Организационными мероприятиями достигается ограничение числа рабочих, подверженных воздействию вибрации посредством планирования работ вибрационного оборудования в присутствии минимального числа рабочих (работа в ночную смену).

Запрещается допуск посторонних людей к работающим установкам сейсмических колебаний всех типов на расстояние менее 20 м, а к установкам, имеющим мачты ("падающий груз", "дизель-молот") - менее удвоенной высоты мачты.

Санитарно-гигиенические мероприятия по защите от вибрации состоят в обеспечении рабочих индивидуальными средствами защиты (виброгасящие рукавицы, нагрудники, костюмы и обувь) и контроле за их правильным использованием.

б) акустические колебания

Частотный диапазон слухового восприятия человеком звуковых колебаний находится в пределах от 16 до 20000 Гц.(слуховые колебания). Колебания с частотой менее 16 Гц – инфразвук, а выше 20 кГц – ультразвук.

Субъективно оцениваемая громкость (физиологическая характеристика) возрастает медленнее, чем интенсивность звуковых волн (физическая характеристика), поэтому обычно уровень громкости выражают в логарифмической шкале, где за единицу измерения принят децибел (дБ). Средний уровень громкой речи составляет 60 дБ, а шум мотора самолета на расстоянии 25 м 120 дБ. Порог болевого ощущения (ухо начинает ощущать давление и боль) – 140 дБ.

Инфразвуком принято называть колебания с частотой ниже 16 Гц, распространяющиеся в воздушной среде. Низкая частота инфразвуковых колебаний обусловливает ряд особенностей его распространения в окружающей среде.

Вследствие большой длины волны инфразвуковые колебания меньше поглощаются в атмосфере и легче огибают препятствия, чем колебания с более высокой частотой. Этим объясняется способность инфразвука распространяться на значительные расстояния с небольшими потерями частичной энергии. Вот почему обычные мероприятия по борьбе с шумом в данном случае неэффективны.

Под воздействием инфразвука возникает вибрация крупных предметов строительных конструкций, из-за резонансных эффектов и возбуждения вторичного индуцированного шума в звуковом диапазоне имеет место усиление инфразвука в отдельных помещениях. Источниками инфразвука могут быть средства наземного, воздушного и водного транспорта, пульсация давления в газовоздушных смесях (форсунки большого диаметра) и др.

Источником инфразвуковых колебаний, кроме того, могут быть вентиляторы, компрессорные установки, все медленно вращающиеся машины и механизмы. В природных условиях инфразвуковые колебания характерны для сходящих снежных лавин, резонансных шумов в горных выработках, раскатов грома, извержения вулканов.

В салонах автомобилей наиболее высокие уровни звукового давления лежат в диапазоне 2—16 Гц, достигая 100 дБ и более. При этом если автомобиль движется с открытыми окнами, уровень может значительно возрастать, достигая 113–120 дБ в октавных полосах ниже 20 Гц. Открытое окно при этом играет роль так называемого резонатора Гельмгольца.

Высокие инфразвуковые уровни имеют место в шуме автобусов, составляя 107–113 дБ на частотах 16–31,5 Гц при общем уровне шума 74 дБ. Инфразвуковой характер имеет шум некоторых самоходных машин, например бульдозера, в шуме которого максимум энергии на частотах 16–31,5 Гц составляет 106 дБ.

Источником инфразвука являются также реактивные двигатели самолетов и ракет. При взлете турбореактивных самолетов уровни инфразвука плавно нарастают от 70–80 дБ до 87–90 дБ на частоте 20 Гц. В то же время на частотах 125–150 Гц отмечается другой максимум, поэтому такой шум все же нельзя назвать выраженным инфразвуком.

Из приведенных примеров видно, что инфразвук на рабочих местах может достигать 120 дБ и выше. При этом работники чаще подвергаются воздействию инфразвука при уровнях 90—100 дБ.

В диапазоне звука 1—30 Гц порог восприятия инфразвуковых колебаний для слухового анализатора составляет 80—120 дБ, а болевой порог – 130–140 дБ.

Исследования, проведенные в условиях производства, свидетельствуют, что в случае резко выраженного инфразвука относительно небольших уровней, например 95 и 100 дБ при общем уровне шума 60 дБ, отмечаются жалобы на раздражительность, головную боль, рассеянность, сонливость, головокружение. В то же время при наличии интенсивного широкополосного шума даже с достаточно высокими уровнями инфразвука указанные симптомы не появляются. Этот факт вероятнее всего связан с маскировкой инфразвука шумом звукового диапазона.

Нормы звукового давления в октавных полосах со среднегеометрическими частотами 2, 4, 8 и 16 Гц не должны превышать 105 дБ.

При длительном воздействии на человека инфразвука с интенсивностью, превышающей допустимый уровень, возникают головные боли, чувство вибрации внутренних органов (обычно на частотах 5-10 Гц). В настоящее время доказано, что при уровне 110 – 150 дБ инфразвук, действуя на организм, приводит к нарушению функционального состояния центральной нервной, сердечно -сосудистой, дыхательной систем и изменению слухового и вестибулярного анализаторов.

Для защиты от инфразвука техногенного происхождения применяют различные технические приемы: повышение жесткости конструкций, повышение числа оборотов машин, устранение низкочастотных резонансных вибраций.

Ультразвук может быть низкочастотный (12 – 100 кГц) и высокочастотный (100 кГц – 1 ГГц), а по способу распространения – воздушный и контактный.

Источниками ультразвука на производстве являются оборудование, в котором генерируются ультразвуковые колебания для выполнения технологических процессов, технического контроля и измерения, а также установки, при эксплуатации которых ультразвук возникает как сопутствующий фактор.

Ультразвуковые колебания по характеру действий оказывают механический, термический и физико-химический эффекты. Сама природа его действия (сжатие-растяжение) обеспечивает механический эффект, тогда как переход механической энергии в тепловую — термический. Уникальным свойством ультразвука является образование кавитации (микропузырьков), что обеспечивает его физико-химический эффект. Кавитация возникает только при распространении ультразвука в жидкостях, а также в биологических тканях. В тканях кавитация сопровождается повышением температуры и давления, возникновением электрических зарядов, люминесцентного свечения, ионизацией молекул воды, распадающихся на свободные радикалы и атомарный водород. В химическом отношении продукты распада ионизированных молекул воды крайне активны, что обусловливает также характер общебиологического действия ультразвука.

Ультразвук обладает главным образом локальным действием на организм, поскольку передается при непосредственном контакте с ультразвуковым инструментом, обрабатываемыми деталями или средами, где возбуждаются ультразвуковые колебания.

Учитывая, что низкочастотные ультразвуки (до 50 кГц) значительно больше, чем высокочастотные шумы, затухают в воздухе по мере удаления от источника колебаний, можно предположить их относительную безвредность для человека, тем более что на границе сред «кожа и воздух» происходит крайне незначительное поглощение падающей энергии (порядка 0,1 %). В то же время ряд исследований свидетельствует о возможности неблагоприятного действия ультразвука через воздух.

Наиболее ранние неблагоприятные субъективные ощущения отмечались у работников, обслуживающих ультразвуковые установки, – головные боли, усталость, бессонница, обострение обоняния и вкуса, которые в более поздние сроки (через 2 года) сменялись угнетением перечисленных функций. У работников, обслуживающих ультразвуковые промышленные установки, выявлены нарушения в вестибулярном анализаторе.

Ультразвук может воздействовать на работников через волокна слухового нерва, которые проводят высокочастотные колебания, и специфически влиять на высшие отделы анализатора, а также на вестибулярный аппарат, который тесно связан со слуховым органом. Исследования отечественных ученых по оценке влияния воздушных ультразвуков на животных и человека позволили разработать нормативы, ограничивающие уровни звукового давления в высокочастотной области звуков и ультразвуков в 1/3-октавных полосах частот.

Допустимые уровни звукового давления ультразвукового диапазона не должны превышать 80 -110 дБ

Длительное систематическое воздействие ультразвука, распространяющегося воздушным путем, вызывает изменения нервной, сердечно -сосудистой и эндокринной систем, слухового и вестибулярного анализаторов. Наиболее характерным является наличие вегетососудистой дистонии и астенического синдрома.

Защита от ультразвуковых колебаний

Нормируемыми параметрами ультразвука, распространяющегося контактным путем, являются пиковое значение виброскорости (м/с) в полосе частот 8—31,5-103 кГц или его логарифмический уровень в децибелах (дБ).

Для борьбы с шумом в помещениях проводятся мероприятия как технического, так и медицинского характера: дистанционное управление приборами (избегать контакта), применение звукоизоляции, защитных рукавиц, ограничение возраста работающих (не моложе 18 лет).

Слуховые колебания.

Всякий нежелательный для человека звук называется шумом.

Шум - это беспорядочное сочетание звуков различной частоты и силы. Источники шума по своей физической природе подразделяются на источники механического, аэродинамического, гидродинамического и электромагнитного шума.

Шум с уровнем 30 – 50 дБ (разговорная речь) привычен для человека и не беспокоит его.

Шум с уровнем 60 – 70 дБ нагружает нервную систему, ведет к неврозу.

Длительное воздействие шума с уровнем свыше 75 дБ может привести к профессиональной тугоухости.

При уровне шума 140 дБ – разрыв барабанных перепонок, а при 160 дБ – смерть.

Интенсивный шум является причиной сердечно -сосудистых заболеваний, нарушений нормальной функции желудка и ряда других функциональных нарушений организма человека. В шумных цехах наиболее часты случаи производственного травматизма.

Профессиональная тугоухость - снижение слуха вплоть до его полной потери. Для производственной тугоухости особенно характерно ухудшение восприятия высоких тонов и в наибольшей степени - частоты 4000 Гц.

Проблема снижения шума на производстве предусматривает решение двух связанных между собой задач:

  • снижение шума изготавливаемых предприятиями машин и оборудования до значений, заданных в технических условиях и стандартах на них;

  • снижение шума на рабочих местах, на территории предприятия и прилегающей к нему территории;

  • использование средств защиты органов слуха (наушники, шлемы) при выполнении работ на местах с повышенным уровнем шума.

  • Во многих случаях к снижению шумообразования приводит замена металлических деталей деталями из пластмасс и других « незвучных » материалов.

Специфика работы выпускников геолого-географического факультета не предполагает длительной работы в условиях повышенного уровня шума, однако даже кратковременное воздействие звука высокого уровня (например, при проведении взрывных работ) может привести к необратимым последствиям для здоровья и требует принятия мер защиты органов слуха (противошумные наушники, вкладыши).

в) электромагнитное излучение

Электромагни́тное излуче́ние (электромагнитные волны) — распространяющееся в пространстве возмущение (изменение состояния) электромагнитного поля (то есть, взаимодействующих друг с другом электрического и магнитного полей). Среди электромагнитных полей вообще, порожденных электрическими зарядами и их движением, принято относить собственно к излучению ту часть переменных электромагнитных полей, которая способна распространяться наиболее далеко от своих источников - движущихся зарядов, затухая наиболее медленно с расстоянием.

К электромагнитному излучению относятся радиоволны (начиная со сверхдлинных), инфракрасное излучение, видимый свет, ультрафиолетовое, рентгеновское и жесткое (гамма-) излучение.

Электромагнитное излучение способно распространяться в вакууме (пространстве, свободном от вещества), но в ряде случаев достаточно хорошо распространяется и в пространстве, заполненном веществом (несколько изменяя при этом свое поведение).

Электромагнитное излучение принято делить по частотнымдиапазонам (см. таблицу). Между диапазонами нет резких переходов, они иногда перекрываются, а границы между ними условны. Поскольку скорость распространения излучения (в вакууме) постоянна, то частота его колебаний жёстко связана сдлиной волныв вакууме.

Название диапазона

Длины волн, λ

Частоты, ν

Источники

Радиоволны

Сверхдлинные

более 10 км

менее 30 кГц

Атмосферные явления. Переменные токи в проводниках и электронных потоках (колебательные контуры).

Длинные

10 км — 1 км

30 кГц — 300 кГц

Средние

1 км — 100 м

300 кГц — 3 МГц

Короткие

100 м — 10 м

3 МГц — 30 МГц

Ультракороткие

10 м –

1 мм

30 МГц — 300 ГГц

Инфракрасное излучение

1 мм — 780 нм

300 ГГц — 429 ТГц

Излучение молекул и атомов при тепловых и электрических воздействиях.

Видимое (оптическое) излучение

780—380 нм

429 ТГц — 750 ТГц

Ультрафиолетовое

380 — 10 нм

7,5×1014 Гц — 3×1016 Гц

Излучение атомов под воздействием ускоренных электронов.

Рентгеновские

10 — 5×10−3 нм

3×1016 — 6×1019 Гц

Атомные процессы при воздействии ускоренных заряженных частиц.

Гамма

менее 5×10−3 нм

более 6×1019 Гц

Ядерные и космические процессы, радиоактивный распад.

Радиоволны. Сверхдлинные, длинные, средние и короткие радиоволны не оказывают какого-либо ощутимого негативного воздействия на человека и среду.

Ультракороткие радиоволны принято разделять на метровые, дециметровые, сантиметровые, миллиметровые и субмиллиметровые (микрометровые). Волны с длиной λ < 1 м (ν > 300 МГц) принято также называть микроволнами или волнами сверхвысоких частот (СВЧ).

Электромагнитные волны различных диапазонов получили широкое применение в промышленности, науке, технике, медицине, космических исследованиях. В связи с этим значительное развитие получила промышленность, производящая различные виды генераторов радиочастот. Источниками излучения радиоволн являются ламповые и полупроводниковые генераторы, которые преобразуют энергию постоянного тока в энергию переменного тока высокой частоты.

На частотах до 10 мГц (30 м) (радиосвязь, радионавигация, радиовещание) ткани человеческого организма легко проводят волны, т.к. длина волны существенно превышает размеры человека.

При более высоких частотах (до 30 гГц) (тропосферная и космическая связь) длина волны ( < 1 см) соизмерима с размерами тела человека и частично поглощается его тканями. Тепловая энергия, возникающая в тканях тела увеличивает общее тепловыделение, а некоторые органы (мозг, глаза, почки, кишечник) имеют слабый механизм терморегуляции и подвержены перегреву, более чувствительны к облучению, при этом возможны необратимые процессы.

Защита персонала от воздействия радиоволн применяется при всех видах работ, если условия работы не удовлетворяют требованиям норм. Эта защита осуществляется следующими способами и средствами:

  1. согласование нагрузок и поглотителей мощности, снижающих напряженность и плотность поля потока энергии электромагнитных волн;

  2. экранирование рабочего места и источника излучения;

  3. рациональное размещение оборудования в рабочем помещении;

  4. подбор рациональных режимов работы оборудования и режима труда персонала;

  5. применение средств предупредительной защиты.

Наиболее эффективно использование согласованных нагрузок и поглотителей мощности (эквивалентов антенн) при изготовлении, настройке и проверке отдельных блоков и комплексов аппаратуры.

Допустимые уровни излучения базовых станций мобильной связи (900 и 1800 МГц, суммарный уровень от всех источников) в санитарно-селитебной зоне в разных странах заметно различаются:

Украина: 2,5 мкВт/см². (самая жесткая санитарная норма в Европе)

Россия, Венгрия: 10 мкВт/см².

США, Скандинавские страны: 100 мкВт/см².

Инфракра́сное излуче́ниеэлектромагнитное излучение, занимающее спектральную область между красным концом спектра видимого света (с длиной волны λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).

Сейчас весь диапазон инфракрасного излучения делят на три составляющих:

коротковолновая область: λ = 0,74—2,5 мкм;

средневолновая область: λ = 2,5—50 мкм;

длинноволновая область: λ = 50—2000 мкм.

Последнее время длинноволновую окраину этого диапазона выделяют в отдельный, независимый диапазон электромагнитных волн — терагерцовое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения.Спектризлученияабсолютно чёрного телапри относительно невысоких температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

Инфракрасные лучи применяются в медицинских целях, если излучение не слишком сильно. Они положительно влияют на организм человека. Инфракрасные лучи обладают возможностью повышать местный кровоток в организме, усиливать обмен веществ, расширять кровеносные сосуды.

Сильное инфракрасное излучение в местах высокого нагрева может вызывать опасность для глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких местах необходимо надевать специальные защитные очки для глаз.

Лазерное излучение (ЛИ)

ЛИ представляет собой особый вид электромагнитного излучения, генерируемого в диапазоне волн 0,1…1000 мкм.

Источники ЛИ – квантовые оптические генераторы (КОГ) и побочные факторы некоторых процессов (металлургия, стекловарение).

При работе с лазерными установками в комплексе производственных факторов в основном доминирует постоянное воздействие на работающих монохроматического лазерного излучения. Воздействие на операторов непосредственно прямого лазерного луча возможно только при грубых нарушениях техники безопасности. Однако работающие с лазерными приборами могут подвергаться облучению отраженного и рассеянного монохроматического излучения. Отражающими и рассеивающими излучение поверхностями могут являться различные оптические элементы, размещенные по ходу луча, мишени, приборы, а также стены производственных помещений. В особенности опасны зеркально отражающие поверхности.

Воздействие ЛИ на глаза приводит ожогам, разрыву сетчатки и стойкой утрате зрения.

Воздействие ЛИ на кожу приводит к ее нокрозу (омертвлению).

Ультрафиолетовое излучение — вид лучистой энергии.

К ультрафиолетовой части спектра относятся волны длиной от 0,1 до 0,4 мкм. В производственных условиях встречается при электросварке, действии ртутно-кварцевых ламп, плавке металла в электропечах, используется в кино- и фотопромышленности, при светокопировальных и плазменных процессах. Ультрафиолетовое излучение применяется для предупреждения D-витаминной недостаточности у рабочих на подземных выработках, а также в физиотерапевтических кабинетах.

Основными искусственными источниками ультрафиолетового излучения являются ртутные лампы высокого и среднего давления, ксеноновые дуговые лампы, а также лампы, содержащие смеси различных газов, в состав которых входят ксенон или пары ртути.

Биологическая активность ультрафиолетовые лучей зависит от длины их волн.

Различают 3 участка спектра с длиной волны:

  1. 0,4—0,31 мкм — оказывающие слабое биологическое действие;

  2. 0,31—0,28 мкм — оказывающие сильное действие на кожный покров;

  3. 0,28—0,20 мкм — активно действующие на тканевые белки и липоиды, способные вызывать гемолиз.

Биологические объекты способны поглощать энергию падающего на них излучения. При этом световой фотон, взаимодействуя с молекулой, выбивает электрон из ее орбиты. В результате образуется положительно заряженная молекула, или малый ион, действующий как свободный радикал, нарушающий структуру белков и повреждающий клеточные мембраны. Так как энергия фотона обратно пропорциональна длине волны, коротковолновое ультрафиолетовое излучение обладает большей повреждающей способностью по отношению к биологическим объектам.

Повреждение живых объектов ультрафиолетовым излучением всегда фотохимическое, оно не сопровождается заметным повышением температуры и может возникнуть после длительного латентного периода.

Для повреждения достаточно малых доз излучения, действующих в течение длительного времени.

Действие ультрафиолетового облучения на кожу, превышающее естественную защитную способность кожи (загар) приводит к ожогам.

Длительное действие ультрафиолета способствует развитию меланомы, различных видов рака кожи, ускоряет старение и появление морщин.

Ультрафиолетовое излучение неощутимо для глаз человека, но при интенсивном облучении вызывает типично радиационное поражение (ожог сетчатки). Так, 1 августа 2008 года десятки россиян повредили сетчатку глаза во время солнечного затмения, несмотря на многочисленные предупреждения о вреде его наблюдения без защиты глаз. Они жаловались на резкое снижение зрения и пятно перед глазами.

Интенсивное воздействие ультрафиолетового излучения может вызвать профессиональные дерматиты с диффузной эритемой и экссудацией, поражение слизистой и роговой оболочек глаза (электроофтальмию).

Ионизирующее электромагнитное излучение. К этой группе традиционно относят рентгеновское и гамма-излучение, хотя, строго говоря, ионизировать атомы может и ультрафиолетовое излучение, и даже видимый свет. Границы областей рентгеновского и гамма-излучения могут быть определены лишь весьма условно. Для общей ориентировки можно принять, что энергия рентгеновских квантовлежит в пределах 20 эВ — 0,1 МэВ, а энергиягамма -квантов— больше 0,1 МэВ. В узком смысле гамма-излучение испускается ядром, а рентгеновское — атомной электронной оболочкой при выбивании электрона с низколежащих орбит, хотя эта классификация неприменима к жёсткому излучению, генерируемому без участия атомов и ядер (например,синхротронномуилитормозному излучению).

К ионизирующим излучениям, имеющим квантовую природу относят потоки заряженных частиц: бета-частиц (электронов и позитронов), альфа-частиц (ядер атома гелия-4), протонов, других ионов, мюонов и др., а также нейтронов Чаще всего встречаются такие разновидности ионизирующих излучений, как рентгеновское и гамма-излучения, потоки альфа-частиц, электронов, нейтронов и протонов. Ионизирующее излучение прямо или косвенно вызывает ионизацию среды, т.е. образование заряженных атомов или молекул - ионов.

Альфа-излучение представляет собой поток альфа-частиц — ядер гелия-4. Альфа-частицы, рождающиеся при радиоактивном распаде, могут быть легко остановлены листом бумаги.

Бета-излучение — это поток электронов, возникающих при бета-распаде; для защиты от бета-частиц энергией до 1 МэВ достаточно алюминиевой пластины толщиной несколько мм.

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках.

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению.

На шкале электромагнитных волн гамма-излучение граничит с рентгеновским излучением, занимая диапазон более высоких частот и энергий. В области 1-100 кэВ гамма-излучение и рентгеновское излучение различаются только по источнику: если квант излучается в ядерном переходе, то его принято относить к гамма-излучению; если при взаимодействиях электронов или при переходах в атомной электронной оболочке — к рентгеновскому излучению.

Гамма-лучи, в отличие от α-лучей и β-лучей, не отклоняются электрическими и магнитными полями, характеризуются большей проникающей способностью при равных энергиях и прочих равных условиях. Гамма -кванты вызывают ионизацию атомов вещества.

В природе ионизирующее излучение обычно генерируется в результате спонтанного радиоактивного распада радионуклидов, ядерных реакций (синтез и индуцированное деление ядер, захват протонов, нейтронов, альфа-частиц и др.), а также при ускорении заряженных частиц в космосе (природа такого ускорения космических частиц до конца не ясна).

Искусственными источниками ионизирующего излучения являются искусственные радионуклиды (генерируют альфа-, бета- и гамма-излучения), ядерные реакторы (генерируют главным образом нейтронное и гамма-излучение), радионуклидные нейтронные источники, ускорители элементарных частиц (генерируют потоки заряженных частиц, а также тормозное фотонное излучение), рентгеновские аппараты (генерируют тормозное рентгеновское излучение)

Области применения гамма-излучения:

гамма-дефектоскопия, контроль изделий просвечиванием γ-лучами;

консервирование пищевых продуктов;

стерилизация медицинских материалов и оборудования;

лучевая терапия;

уровнемеры;

гамма-каротажв геологии;

гамма-высотомер, измерение расстояния до поверхности при приземлении спускаемых космических аппаратов;

гамма-стерилизацияспеций, зерна, рыбы, мяса и других продуктов для увеличения срока хранения.

Для радиометрических исследований разрезов буровых скважин разрешается применять закрытые радионуклидные нейтронные и гамма - источники ионизирующего излучения, т.е. проводится гамма-каротаж — изучение естественного гамма излучения горных пород в буровых скважинах для выявления радиоактивных руд, литологического расчленения разреза

Специалисты - геологи могут сталкиваться с ионизирующими излучениями при проведении радиометрических работ, выполнении работ в шахтах, горных выработках, на урановых рудниках и др. Радиоактивный газ радон – 222. Газ, испускающий альфа-частицы, постоянно образуется в горных породах. Опасен при накоплении в шахтах, подвалах, на 1 этаже.

Природные источники дают суммарную годовую дозу примерно 200 мбэр (космос - до 30 мбэр, почва - до 38 мбэр, радиоактивные элементы в тканях человека - до 37 мбэр, газ радон - до 80 мбэр и другие источники).

Искусственные источники добавляют ежегодную эквивалентную дозу облучения примерно в 150-200 мбэр (медицинские приборы и исследования - 100-150 мбэр, просмотр телевизора -1-3 мбэр, ТЭЦ на угле - до 6 мбэр, последствия испытаний ядерного оружия - до 3 мбэр и другие источники).

Всемирной организацией здравоохранения (ВОЗ) предельно допустимая (безопасная) эквивалентная доза облучения для жителя планеты определена в 35 бэр, при условии её равномерного накопления в течение 70 лет жизни.