
- •1.Определение эконометрики, предмет и история возникновения эконометрики.
- •2.Понятие регрессии и корреляции в эконометрических исследованиях.
- •3.Спецификация модели. Ошибка спецификации.
- •4.Основные типы кривых, используемые при кол-ой оценке связей м/у 2мя переем-и.
- •5.Понятие пар регр и корр. Вид ур-ия лин регр. Интерпрет-я параметров.
- •6.Методы оценки параметров ур-ия линейной регрессии.Метод наим-х квадратов-класс-ий подход оценки параметров ур-ия лин регр.
- •7.Примеры применения парной лин регр в эконометр иссл-ях.
- •8.Показатели тесноты связи в ур-ях лин и нелин регр.
- •9.Парный лин коэф-т коррел, методы его опред-ия,аналитическое знач-е.
- •10.Коэф-т детерминации-один из способов оценки кач-ва подбора лин функции. Методика расчета, экон смысл, аналит значение.
- •11.Понятие коэф-та эластичности, методика расчета, аналитический смысл.
- •12.Графическое изображение осн типов кривых. Оценка тесноты связи с помощью графика.
- •13.Правило сложения дисперсий. Аналитическое значение разл-ия общей диспер.
- •14.Понятие ст-ни св-ды,опр-е числа ст-ей св-ды для общ, факт. И отс дисперсии.
- •15.Крит Фишера-методы расчета,исп-ие для оц-ки существ-ти св-зи м/у факт-ом и рез-ом.
- •16.Дисперс-ый анализ рез-тов регр при оценки значимости ур-ия регр. Табл дисп-го анализа, ее аналитич знач-е.
- •17. Методы оценки статистической значимости параметров уравнения линейной регрессии. Стандартная ошибка коэффициента регрессии, определения фактического значения критерия стьюдента.
- •18. Оценка значимости параметра «а»
- •19.Методика определения прогнозных значений результата на основе линейного уравнения регрессии – точечного и интервального.
- •20.Нелинейная регрессия. Два класса нелинейных регрессий(примеры).
- •21.Особенности определения параметров параболы второго порядка.
- •22. Понятие линеаризации нелинейных уравнений регрессии. Оценка параметров уравнения гиперболы, степенной функции, приведённых к линейному виду.
- •23. Методы расчета и интерпритация коэффициентов эластичности для линейных и нелинейных математических функций.
- •24. Показатель тесноты связи для нелинейной регрессии – индекс корреляции – методика расчета, аналитическое значение.
- •25. Оценка статистической значимости индекса корреляции, индекс детерминации – понятие, аналитическое значение.
- •26. Средняя ошибка апроксимации – методы расчета, использование в анализе качества модели.
- •27. Отбор факторов при построении уравнения множественной регрессии, понятие коллинеарности и мультиколлинеарности.
- •29. Использование мнк и метода определителей для оценки параметров уравнения множественной регрессии.
- •30. Уравнение регрессии в стандартизированном масштабе,экономическое содержание стандартизированных коэффициентов регрессии, их интерпритация.
- •31.Коэффициент эластичности в уравнениях множественной регрессии: методика расчета, аналитическое значение, интерпретация.
- •32. Индекс множественной корреляции, коэффициент детерминации, методики построения, аналитическое значение
- •33. Понятие, методика расчета и область применения скорректированного индекса множественной детерминации.
- •34. Понятие частных коэффициентов (индексов) корреляции и их аналитическое значение.
- •35. Согласованность частной корреляции и стандартизированных коэффициентов регрессии на примере двухфакторного анализа.
- •36. Оценка значимости уравнения множественной регрессии с помощью критерия фишера. Методика определения фактического значения f-критерия через индекс детерминации и с помощью дисперсионного анализа.
- •37. Частный критерий фишера, его аналитический смысл.
- •38. Оценка существенности дополнительно включенного фактора в уравнение множественной регрессии с помощью таблицы дисперсионного анализа.
- •39. Понятие фиктивной переменной во множественной регрессии.
- •40. Предпосылки метода наименьших квадратов, понятие гомо- и гетероскедастичности, графическое изображение гомо- и гетероскедастичности.
- •41. Общее понятие о системах уравнений, используемых в эконометрике. Структурная и приведенная формы модели.
- •42. Понятие идентификации при переходе от приведенной формы модели к структурной.
- •43 Основные элементы временного ряда.
- •44. Понятиеавтокорреляции уровней временного ряда,методика расчета коэф.Автокорреляции, его аналитическое значение
- •45. Выявление тенденции изучаемого явления с помощью аналитического выравнивания временного ряда
- •46. Методика выявления сезонных и циклических колебаний в аддитивной модели.
- •47. Расчет сезонной компоненты в мультипликативной модели.
- •48. Специфика статистической оценки взаимосвязи двух временных рядов.
- •49. Автокорреляция в остатках. Критерий дарбина-уотсона.
44. Понятиеавтокорреляции уровней временного ряда,методика расчета коэф.Автокорреляции, его аналитическое значение
Корреляционную
зависимость между последовательными
уровнями временного ряда называют
автокорреляцией
уровней ряда.
Количественно
ее можно измерить с помощью линейного
коэффициента
корреляции между уровнями исходного
временного ряда и уровнями этого ряда,
сдвинутыми на несколько шагов во времени.
Коэффициент корреляции имеет вид:
можно определить коэффициенты автокорреляции второго и более высоких порядков. Так, коэффициент автокорреляции второго порядка характеризует тесноту связи между уровнями уt и yt-1 и определяется по формуле:
Число
периодов, по которым рассчитывается
коэффициент автокорреляции,
называют лагом.
С
увеличением лага число пар значений,
по которым рассчитывается коэффициент
автокорреляции, уменьшается.
Отметим два важных свойства коэффициента автокорреляции. Во-первых, он строится по аналогии с линейным коэффициентом корреляции и таким образом характеризует тесноту только линейной связи текущего и предыдущего уровней ряда.
Во-вторых, по знаку коэффициента автокорреляции нельзя делать вывод о возрастающей или убывающей тенденции в уровнях ряда.
Последовательность коэффициентов автокорреляции уровней первого, второго и т. д. порядков называют автокорреляционной функцией временного ряда. График зависимости ее значений от величины лага называется коррелограммой.
45. Выявление тенденции изучаемого явления с помощью аналитического выравнивания временного ряда
Одним из наиболее распространенных способов моделирования тенденции временного ряда является построение аналитической функции, характеризующей зависимость уровней ряда от времени, или тренда. Этот способ называют аналитическим выравниванием временного ряда.
Поскольку зависимость от времени может принимать разные формы, для ее формализации можно использовать различные виды функций. Для построения трендов чаще всего применяются следующие функции:
линейный тренд:
гипербола:
,
экспоненциальный тренд:
тренд в форме степенной функции:
парабола второго и более высоких порядков:
Параметры каждого из перечисленных выше трендов можно определить обычным МНК, используя в качестве независимой переменной время t=1,2,..., n, а в качестве зависимой перемен- 1 ной — фактические уровни временного ряда yt . Существует несколько способов определения типа тенденции. К числу наиболее распространенных способов относятся качественный анализ изучаемого процесса, построение и визуальный анализ графика зависимости уровней ряда от времени, расчет некоторых основных показателей динамики. В этих же целях можно использовать и коэффициенты автокорреляции уровней ряда. Тип тенденции можно определить путем сравнения коэффициентов автокорреляции первого порядка, рассчитанных по исходным и преобразованным уровням ряда. Если временной ряд имеет линейную тенденцию, то его соседние уровни уt и уt-1 тесно коррелируют. В этом случае коэффициент автокорреляции первого порядка уровней исходного ряда должен быть высоким. Если временной ряд содержит нелинейную тенденцию, например, в форме экспоненты, то коэффициент автокорреляции первого порядка по логарифмам уровней исходного ряда будет выше, чем соответствующий коэффициент, рассчитанный по уровням ряда. Чем сильнее выражена нелинейная тенденция в изучаемом временно м ряде, тем в большей степени будут различаться значения указанных коэффициентов.
Выбор наилучшего уравнения в случае, если ряд содержит нелинейную тенденцию, можно осуществить путем перебора основных форм тренда, расчета по каждому уравнению скорректированного коэффициента детерминации R2 и выбора уравнения тренда с максимальным значением скорректированного коэффициента детерминации.