
- •В.А.Кудинов, э.М.Карташов гидрАвЛика
- •Глава 1 введение
- •§ 1.1. Краткий исторический обзор развития гидравлики
- •§ 1.2. Определение науки «Гидромеханика»
- •§ 1.3. Реальные и идеальные жидкости
- •§ 1.4. Размерности физических величин, применяемых в гидРомеханИке
- •Глава 2 свойства жидкостей
- •§ 2.1. Основные физико-механические свойства жидкости
- •§ 2.2. Вязкость. Закон ньютона для внутреннего трения в жидкости
- •§ 2.3. Зависимость вязкости от температуры и давления. Вискозиметры
- •Глава 3 гидростатика
- •§ 3.1. Силы, действующие в жидкости
- •§ 3.2. Гидростатическое давление и его свойства
- •§ 3.3. Дифференциальные уравнения равновесия жидкости
- •§ 3.4. Потенциал массовых сил
- •§ 3.5. Интеграл уравнений эйлера для несжимаемой жидкости
- •§ 3.6. Уравнение поверхности равного давления
- •§ 3.7. Основное уравнение гидростатики
- •§ 3.8. Методы и приборы для измерения давления. Абсолютное и избыточное давление. Вакуум
- •§ 3.9. Гидростатический напор и энергетический закон для жидкости, находящейся в равновесии
- •§ 3.10 Интегрирование уравнений эйлера для случая относительного покоя жидкости
- •§ 3.11. Сила давления жидкости на криволинейную поверхность произвольной формы
- •§ 3.12. Частные случаи расчета сил, действующих на криволинейные поверхности закономерных форм
- •§ 3.13. Сила давления жидкости на плоскую стенку произвольной формы
- •§ 3.14. Гидростатический парадокс
- •§ 3.15. Центр давления и определение его координат
- •§ 3.16. Простые гидравлические машины. Гидравлический пресс
- •§ 3.17. Гидравлический аккумулятор
- •§ 3.18. Закон Архимеда
- •§ 3.19. Условия плавучести и остойчивости тел, частично погруженных в жидкость
- •Глава 4 Гидродинамика
- •§ 4.1. Основные кинематические понятия и определения. Два метода исследования движения жидкости
- •§ 4.2. Траектории частиц и линии тока
- •§ 4.3. Установившееся движение
- •§ 4.4. Струйчатая модель движения жидкости. Трубка тока. Расход жидкости
- •§ 4.5. Средняя скорость
- •§ 4.6. Уравнение неразрывности в переменных эйлера в декартовой системе координат
- •§ 4.7. Дифференциальные уравнения движения идеальной (невязкой) жидкости (уравнения эйлера)
- •§ 4.8. Дифференциальные уравнения движения вязкой жидкости (уравнения навье-стокса)
- •§ 4.9. Уравнение бернулли для элементарной струйки идеальной жидкости
- •§ 4.10. Физический и геометрический смысл уравнения бернулли. Напор жидкости
- •§ 4.11. Уравнение бернулли для элементарной струйки реальной жидкости
- •§ 4.12. Уравнение бернулли для потока реальной жидкости
- •§ 4.13. ГрафИческая иллюстрация уравнения бернулли для потока реальной жидкости
- •§ 4.14. Практическое применение уравнения бернулли
- •§ 4.15. Трубка прандтля
- •§ 4.16. Трубка вентури, сопло, диафрагма
- •Глава 5 основы теории гидродинамического подобия
- •§ 5.1. Основные понятия и определения теории подобия
- •§ 5.2. Теоремы теории подобия. Критерии подобия
- •§ 5.3. Физический смысл критериев подобия
- •§5.4. Метод анализа размерности
- •Глава 6
- •§ 6.1. Два режима движения жидкости
- •§ 6.2. Равномерное движение жидкости
- •§ 6.3. Основное уравнение равномерного потока. Уравнение динамического равновесия равномерного потока
- •§ 6.4. Ламинарное движение жидкости
- •§ 6.5. Расход жидкости
- •§ 6.6. Коэффициент линейных потерь при ламинарном движении жидкости
- •§ 6.7. Формирование изотермического ламинарного потока
- •§ 6.8. Основы гидродинамической теории смазки
- •§ 6.9. Турбулентное движение жидкости
- •§ 6.10. Турбулентное перемешивание. Пульсация скоростей и напряжений при турбулентном режиме
- •§ 6.11. Осреднение скоростей
- •§ 6.12. Осреднение напряжений
- •§ 6.13. Структура турбулентного потока
- •§ 6.14. Касательные напряжения в турбулентном потоке
- •§ 6.15. Полуэмпирические теории турбулентности
- •§ 6.16. Логарифмический закон распределения скоростей в круглой трубе
- •§ 6.17. Экспериментальные данные для коэффициента гидравлического сопротивления. Опыты Никурадзе и Зегжда
- •§ 6.18. Формулы для определения коэффициента гидравлического сопротивления
- •§ 6.19. Местные сопротивления
- •§ 6.20. Зависимость коэффициента местных потерь от числа Рейнольдса
- •§ 6.21. Принцип наложения потерь напора. Коэффициент сопротивления системы
- •§ 6.22. Основные расчетные формулы для определения потерь напора
- •Глава 7 Гидравлический расчёт трубопроводов
- •§ 7.1. Назначение и классификация трубопроводов
- •§ 7.2. Расчет и проектирование трубопроводов
- •§ 7.3. Гидравлический расчет простого трубопровода
- •§ 7.4. Метод эквивалентных потерь
- •§ 7.5. Гидравлический расчет сложных трубопроводов
- •§ 7.6. Гидравлические характеристики трубопроводов
- •§ 7.7. Гидроэнергетический баланс насосной установки
- •§ 7.8. Сифонные трубопроводы
- •§ 7.9. Гидравлический удар в трубах
- •§ 7.10. Кавитация
- •Глава 8 Истечение жидкости через отверстия и насадки
- •§ 8.1. Истечение через малое отверстие в тонкой стенке
- •§ 8.2. Истечение через большое отверстие
- •§ 8.3. Истечение через затопленное отверстие
- •§ 8.4. Истечение жидкости при переменном напоре
- •§ 8.5. Истечение через насадки
- •Оглавление
- •Средние значения модуля упругости е жидких и твердых тел
- •Средние значения эквивалентной шероховатости э
- •Библиографический список
§ 4.16. Трубка вентури, сопло, диафрагма
В промышленных условиях для измерения расхода жидкостей применяются трубки Вентури, сопла и диафрагмы. Более подробно рассмотрим трубку Вентури (рис. 4.25). Трубка Вентури создает в трубопроводе местное сужение потока и по возникающему перепаду давлений p можно определить расход жидкости.
Для сечений I и II запишем уравнение Бернулли (считая распределение скоростей равномерным)
,
где hM
- потеря напора между сечениями I и II,
;
- коэффициент
местных потерь (см. § 6.21).
Уравнение неразрывности для несжимаемой жидкости имеет вид
.
Отсюда
.
Подставляя hM,
1,
и
в уравнение Бернулли и выражая 2,
получим
.
Объемный расход будет определяться по формуле
Рис. 4.25 |
Рис. 4.26
|
,
(4.19)
где C - величина, постоянная для данного расходомера (трубки Вентури).
Довольно часто вместо пьезометров 1 и 2 для измерения перепада давления в расходомере применяют дифференциальный трубный манометр (рис. 4.26).
Рис. 4.27 Рис. 4.28
Учитывая, что над ртутью в трубках находится одна и та же жидкость плотностью , можно записать (см. рис. 4.26)
.
(4.20)
Значения
,
полученные по формуле (4.20), можно
использовать для определения расхода
по формуле (4.19).
Аналогично для измерения расхода могут быть использованы диафрагмы (рис. 4.27) и сопла (рис. 4.28).
Задача 1. При ламинарном режиме
движения жидкости по горизонтальному
трубопроводу диаметром
расход жидкости равен
(рис. 4.29). Падение пьезометрической
высоты на участке длиной
составляет
.
Определить коэффициенты кинематической
и динамической
вязкости жидкости. Исходные данные
задачи:
;
;
;
;
.
Рис. 4.29
Решение.
;
;
;
;
.
(а)
Запишем уравнение Бернулли для сечений 1 и 2 трубы
.
Так как
и
,
то уравнение Бернулли примет вид
,
где
;
.
Учитывая, что
,
получим
.
Отсюда
.
Известно, что λ = 64/ Re – формула Пуазейля. Отсюда Re = 64/λ.
Подставляя последнее соотношение в (а), получим
.
Отсюда
.
Учитывая, что
м2,
получим
.
Так как
,
то
.
Глава 5 основы теории гидродинамического подобия
Существует два метода исследования физических явлений – аналитический и экспериментальный. При аналитическом исследовании движения жидкости задача сводится к интегрированию сиcтемы дифференциальных уравнений при заданных условиях однозначности. Например, для вязкой несжимаемой жидкости имеем следующую сиcтему дифференциальных уравнений
;
(5.1)
,
(5.2)
где (5.1) – система уравнений Навье – Стокса, записанных в векторной форме (см. § 4.8); (5.2) - уравнение неразрывности. Кроме того, должны быть заданы начальные и граничные условия и значения физических постоянных и .
В принципе, совокупностью системы основных дифференциальных уравнений и условий однозначности конкретное единичное явление определено вполне. Однако эти уравнения чрезвычайно сложны (являются уравнениями в частных производных) и решения найдены лишь для небольшого числа частных случаев, к тому же при весьма существенных упрощающих предпосылках.
Другим методом исследования является непосредственный эксперимент. При этом измеряются те величины, которые представляют прямой практический интерес и находятся связи, допускающие непосредственное приложение. Однако данные, полученные из опыта, будут относиться только к тому частному случаю, который подвергался эксперименту. Необходимо найти пути обобщения данных опыта на другие родственные явления. Это позволило бы на основании немногих экспериментов судить о параметрах жидкости в многочисленных родственных явлениях. Задача нахождения научно обоснованного метода обобщения данных опыта решается теорией подобия, которая является учением о методах обобщения данных опыта.