Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Гидравлика учебник.doc
Скачиваний:
292
Добавлен:
13.11.2019
Размер:
4.83 Mб
Скачать

§ 4.2. Траектории частиц и линии тока

Траекторией движущейся частицы жидкости называется путь одной и той же частицы, прослеженной во времени. Изучение траекторий частиц лежит в основе метода Лагранжа. При исследовании движения жидкости по методу Эйлера общее представление о движении жидкости можно составить при помощи построения линий тока (рис. 4.2, 4.3). Линией тока называется такая линия, в каждой точке которой в данный момент времени t векторы скорости являются касательными к этой линии.

Рис.4.2.

Рис.4.3.

При установившемся движении (см. § 4.3), когда уровень жидкости в емкости не изменяется (см. рис. 4.2), траектории частиц и линии тока совпадают. В случае неустановившегося движения (см. рис. 4.3) траектории частиц и линии тока не совпадают.

Следует подчеркнуть разницу между траекторией частицы и линией тока. Траектория относится лишь к одной определенной частице, изучаемой в течение определенного отрезка времени. Линия тока относится к определенной совокупности различных частиц, рассматриваемых в одно мгновение (в данный момент времени).

§ 4.3. Установившееся движение

Понятие установившегося движения вводится только при исследовании движения жидкости в переменных Эйлера.

Установившимся называется движение жидкости, при котором все элементы, характеризующие движение жидкости, в любой точке пространства не меняются во времени (см. рис. 4.2). Например, для составляющих скорости будем иметь

;

;

.

Отсюда

; ; .

Тогда

;

;

.

Так как величина и направление скорости движения в любой точке пространства при установившемся движении не меняются, то и линии тока не будут меняться во времени. Отсюда следует (как уже было отмечено в § 4.2), что при установившемся движении траектории частиц и линии тока совпадают.

Движение, при котором все элементы, характеризующие движение жидкости, в любой точке пространства меняются во времени, называется неустановившимся ( , рис. 4.3).

§ 4.4. Струйчатая модель движения жидкости. Трубка тока. Расход жидкости

Рассмотрим линию тока 1-2 (рис. 4.4). Проведем в точке 1 плоскость, перпендикулярную к вектору скорости 1. Возьмем в этой плоскости элементарный замкнутый контур l, охватывающий площадку d. Через все точки этого контура проведем линии тока. Совокупность линий тока, проведенных через какой-либо контур в жидкости, образуют поверхность, называемую трубкой тока.

Рис. 4.4

Рис. 4.5

Совокупность линий тока, проведенных через все точки элементарной площадки d, составляет элементарную струйку. В гидравлике применяется так называемая струйчатая модель движения жидкости. Поток жидкости рассматривается как состоящий из отдельных элементарных струек.

Рассмотрим поток жидкости, изображенный на рис.4.5. Объемным расходом жидкости через какую-либо поверхность называется объем жидкости, протекающий в единицу времени через данную поверхность.

Очевидно, элементарный расход будет

,

где n- направление нормали к поверхности.

Полный расход

или

.

Если провести через любую точку потока ортогональную линиям тока поверхность А, то . Поверхность, являющаяся геометрическим местом частиц жидкости, скорости которых перпендикулярны к соответствующим элементам этой поверхности, называется живым сечением потока и обозначается .Тогда для элементарной струйки будем иметь

и для потока

Это выражение называют объемным расходом жидкости через живое сечение потока.

Примеры.

1. Живое сечение потока при напорном движении показано на рис.4.6.

2. Живое сечение потока при безнапорном движении дано на рис.4.7, 4.8.

Отношение площади живого сечения потока к смоченному периметру ложа называется гидравлическим радиусом R

.

Рис. 4.6

Рис. 4.7

Рис. 4.8

Для круглой трубы

.