
- •В.А.Кудинов, э.М.Карташов гидрАвЛика
- •Глава 1 введение
- •§ 1.1. Краткий исторический обзор развития гидравлики
- •§ 1.2. Определение науки «Гидромеханика»
- •§ 1.3. Реальные и идеальные жидкости
- •§ 1.4. Размерности физических величин, применяемых в гидРомеханИке
- •Глава 2 свойства жидкостей
- •§ 2.1. Основные физико-механические свойства жидкости
- •§ 2.2. Вязкость. Закон ньютона для внутреннего трения в жидкости
- •§ 2.3. Зависимость вязкости от температуры и давления. Вискозиметры
- •Глава 3 гидростатика
- •§ 3.1. Силы, действующие в жидкости
- •§ 3.2. Гидростатическое давление и его свойства
- •§ 3.3. Дифференциальные уравнения равновесия жидкости
- •§ 3.4. Потенциал массовых сил
- •§ 3.5. Интеграл уравнений эйлера для несжимаемой жидкости
- •§ 3.6. Уравнение поверхности равного давления
- •§ 3.7. Основное уравнение гидростатики
- •§ 3.8. Методы и приборы для измерения давления. Абсолютное и избыточное давление. Вакуум
- •§ 3.9. Гидростатический напор и энергетический закон для жидкости, находящейся в равновесии
- •§ 3.10 Интегрирование уравнений эйлера для случая относительного покоя жидкости
- •§ 3.11. Сила давления жидкости на криволинейную поверхность произвольной формы
- •§ 3.12. Частные случаи расчета сил, действующих на криволинейные поверхности закономерных форм
- •§ 3.13. Сила давления жидкости на плоскую стенку произвольной формы
- •§ 3.14. Гидростатический парадокс
- •§ 3.15. Центр давления и определение его координат
- •§ 3.16. Простые гидравлические машины. Гидравлический пресс
- •§ 3.17. Гидравлический аккумулятор
- •§ 3.18. Закон Архимеда
- •§ 3.19. Условия плавучести и остойчивости тел, частично погруженных в жидкость
- •Глава 4 Гидродинамика
- •§ 4.1. Основные кинематические понятия и определения. Два метода исследования движения жидкости
- •§ 4.2. Траектории частиц и линии тока
- •§ 4.3. Установившееся движение
- •§ 4.4. Струйчатая модель движения жидкости. Трубка тока. Расход жидкости
- •§ 4.5. Средняя скорость
- •§ 4.6. Уравнение неразрывности в переменных эйлера в декартовой системе координат
- •§ 4.7. Дифференциальные уравнения движения идеальной (невязкой) жидкости (уравнения эйлера)
- •§ 4.8. Дифференциальные уравнения движения вязкой жидкости (уравнения навье-стокса)
- •§ 4.9. Уравнение бернулли для элементарной струйки идеальной жидкости
- •§ 4.10. Физический и геометрический смысл уравнения бернулли. Напор жидкости
- •§ 4.11. Уравнение бернулли для элементарной струйки реальной жидкости
- •§ 4.12. Уравнение бернулли для потока реальной жидкости
- •§ 4.13. ГрафИческая иллюстрация уравнения бернулли для потока реальной жидкости
- •§ 4.14. Практическое применение уравнения бернулли
- •§ 4.15. Трубка прандтля
- •§ 4.16. Трубка вентури, сопло, диафрагма
- •Глава 5 основы теории гидродинамического подобия
- •§ 5.1. Основные понятия и определения теории подобия
- •§ 5.2. Теоремы теории подобия. Критерии подобия
- •§ 5.3. Физический смысл критериев подобия
- •§5.4. Метод анализа размерности
- •Глава 6
- •§ 6.1. Два режима движения жидкости
- •§ 6.2. Равномерное движение жидкости
- •§ 6.3. Основное уравнение равномерного потока. Уравнение динамического равновесия равномерного потока
- •§ 6.4. Ламинарное движение жидкости
- •§ 6.5. Расход жидкости
- •§ 6.6. Коэффициент линейных потерь при ламинарном движении жидкости
- •§ 6.7. Формирование изотермического ламинарного потока
- •§ 6.8. Основы гидродинамической теории смазки
- •§ 6.9. Турбулентное движение жидкости
- •§ 6.10. Турбулентное перемешивание. Пульсация скоростей и напряжений при турбулентном режиме
- •§ 6.11. Осреднение скоростей
- •§ 6.12. Осреднение напряжений
- •§ 6.13. Структура турбулентного потока
- •§ 6.14. Касательные напряжения в турбулентном потоке
- •§ 6.15. Полуэмпирические теории турбулентности
- •§ 6.16. Логарифмический закон распределения скоростей в круглой трубе
- •§ 6.17. Экспериментальные данные для коэффициента гидравлического сопротивления. Опыты Никурадзе и Зегжда
- •§ 6.18. Формулы для определения коэффициента гидравлического сопротивления
- •§ 6.19. Местные сопротивления
- •§ 6.20. Зависимость коэффициента местных потерь от числа Рейнольдса
- •§ 6.21. Принцип наложения потерь напора. Коэффициент сопротивления системы
- •§ 6.22. Основные расчетные формулы для определения потерь напора
- •Глава 7 Гидравлический расчёт трубопроводов
- •§ 7.1. Назначение и классификация трубопроводов
- •§ 7.2. Расчет и проектирование трубопроводов
- •§ 7.3. Гидравлический расчет простого трубопровода
- •§ 7.4. Метод эквивалентных потерь
- •§ 7.5. Гидравлический расчет сложных трубопроводов
- •§ 7.6. Гидравлические характеристики трубопроводов
- •§ 7.7. Гидроэнергетический баланс насосной установки
- •§ 7.8. Сифонные трубопроводы
- •§ 7.9. Гидравлический удар в трубах
- •§ 7.10. Кавитация
- •Глава 8 Истечение жидкости через отверстия и насадки
- •§ 8.1. Истечение через малое отверстие в тонкой стенке
- •§ 8.2. Истечение через большое отверстие
- •§ 8.3. Истечение через затопленное отверстие
- •§ 8.4. Истечение жидкости при переменном напоре
- •§ 8.5. Истечение через насадки
- •Оглавление
- •Средние значения модуля упругости е жидких и твердых тел
- •Средние значения эквивалентной шероховатости э
- •Библиографический список
§ 3.12. Частные случаи расчета сил, действующих на криволинейные поверхности закономерных форм
Рассмотрим здесь только цилиндрические поверхности с образующей параллельной оси y (рис.3.16).
Задача в данном случае по существу сводится к нахождению тела давления и к определению направления веса тела давления. Вес тела давления может быть как положительный – направленный по оси 0z , так и отрицательный – направленный в сторону отрицательных z, т. е. вертикально вверх.
Рис. 3.16
Когда силы давления действуют на поверхность вниз, то и вес тела давления получается направленным вниз, т. е. положительным. Когда силы давления действуют на поверхность вверх (случай 3), то и вес тела давления направлен вверх, т.е. отрицателен. После нахождения G расчет ведется также, как было указано выше.
§ 3.13. Сила давления жидкости на плоскую стенку произвольной формы
Пусть имеется фигура произвольной формы площадью в плоскости 0l, наклоненной к горизонту под углом (рис. 3.17).
Для удобства вывода формулы для силы давления жидкости на рассматриваемую фигуру повернем плоскость стенки на 900 вокруг оси 0l и совместим ее с плоскостью чертежа. Выделим на рассматриваемой плоской фигуре на глубине h от свободной поверхности жидкости элементарную площадку d. Тогда элементарная сила, действующая на площадку d, будет
.
Интегрируя последнее соотношение, получим суммарную силу давления жидкости на плоскую фигуру
.
Учитывая, что
,
получим
или
.
Рис. 3.17
Последний интеграл равен статическому моменту площадки относительно оси 0y, т.е.
,
где lс - расстояние от оси 0y до центра тяжести фигуры. Тогда
.
Так как
,
то
,
т. е. суммарная сила давления на плоскую фигуру равна произведению площади фигуры на гидростатическое давление в ее центре тяжести.
Точка приложения суммарной силы давления (точка d, рис 3.17) называется центром давления. Центр давления находится ниже центра тяжести плоской фигуры на величину эксцентриситета е. Последовательность определения координат центра давления и величины эксцентриситета изложена в § 3.15.
В
Рис.
3.18
.
В частном случае горизонтальной прямоугольной стенки будем иметь
.
§ 3.14. Гидростатический парадокс
Формула для силы давления на горизонтальную стенку
показывает, что суммарное давление на плоскую фигуру определяется лишь глубиной погружения центра тяжести и площадью самой фигуры, но не зависит от формы того сосуда, в который налита жидкость. Поэтому, если взять ряд сосудов, различных по форме, но имеющих одинаковую площадь дна Г и равные уровни жидкости H , то во всех этих сосудах суммарное давление на дно будет одинаковым (рис. 3.19). Гидростатическое давление обусловлено в данном случае силой тяжести, но вес жидкости в сосудах разный.
Возникает вопрос: как же различный вес может создать одинаковое давление на дно? В этом кажущемся противоречии и состоит так называемый гидростатический парадокс. Раскрытие парадокса заключается в том, что сила веса жидкости действует в действительности не только на дно, но еще и на другие стенки сосуда.
Рис. 3.19
В случае расширяющегося кверху сосуда, очевидно, что вес жидкости больше силы действующей на дно. Однако в данном случае часть силы веса действует на наклонные стенки. Эта часть есть вес тела давления.
В случае сужающегося к верху сосуда достаточно вспомнить, что вес тела давления G в этом случае отрицателен и действует на сосуд вверх.