
- •Часть I
- •Кинематика
- •1.1. Основные вопросы механики
- •1.2. Основные физические модели и понятия механики
- •1.3. Кинематика материальной точки
- •1.3.1. Система отсчета
- •1.3.2. Радиус-вектор, вектор перемещения
- •1.3.6. Взаимосвязь между линейными и угловыми кинематическими величинами
- •1.4. Кинематическое уравнение движения. Прямая и обратная задачи кинематики
- •Кинематика твердого тела
- •2. Динамика материальной точки
- •2.1. Ньютоновская динамика и границы ее применимости
- •2.2. Законы Ньютона
- •2.3. Силы
- •2.3.1. Гравитационное взаимодействие
- •2.3.2. Электромагнитное взаимодействие
- •2.4. Движение материальной точки в однородном силовом поле
- •Законы сохранения в механике
- •3.1. Интегралы движения и законы сохранения
- •3.2.Закон сохранения импульса и его векторный характер
- •3.3. Механическая работа
- •3.4. Кинетическая энергия
- •3.5. Потенциальная энергия и ее связь с силой
- •Поле сил тяготения и кулоновское силовое поле
- •3.6.3. Поле силы тяжести
- •3.6.4. Поле упругих сил
- •3.7. Закон сохранения механической энергии
- •3.8. Примеры применения законов сохранения механической энергии и импульса
- •Движение частицы в потенциальном силовом поле
- •3.8.2. Абсолютно упругий удар двух материальных точек
- •3.8.3. Роль закона сохранения механической энергии при решении конкретных задач
- •Закон сохранения момента импульса
- •3.10. Момент силы. Момент импульса
- •Элементы динамики вращательного движения твердого тела
- •Вращение твердого тела относительно неподвижной оси
- •4.2. Момент инерции
- •4.3. Примеры вычисления моментов инерции однородных симметричных тел
- •4.4. Кинетическая энергия вращающегося твердого тела
- •Механическая работа при вращательном движении твердого тела
- •4.6. Сравнение описаний движения материальной точки и вращения твердого тела
- •Применение основных законов динамики твердого тела при решении конкретных задач
- •5. Основы специальной теории относительности (сто)
- •5.1. Преобразования Галилея. Принцип относительности Галилея
- •Любая система отсчета , движущаяся относительно некоторой инерциальной системы отсчета равномерно и прямолинейно, также является инерциальной.
- •5.2. Опыт Майкельсона. Постулаты теории относительности
- •Принцип постоянства (инвариантности) скорости света
- •5.3. Преобразования Лоренца
- •5.4. Следствия из преобразований Лоренца
- •5.4.1. Лоренцовское сокращение длины
- •5.4.2. Относительность промежутков времени
- •5.4.3. Относительность одновременности
- •5.5. Релятивистский закон сложения скоростей
- •5.6. Релятивистские импульс и масса частицы
- •5.7. Релятивистская энергия
- •1. Релятивистская кинетическая энергия частицы определяется приращением ее полной энергии (5.23), (5.26).
- •2. Полная энергия системы и ее масса связаны универсальной формулой а. Эйнштейна (5.28).
- •5.8. Связь релятивистской энергии и импульса частицы
- •6. Ответы на контрольные вопросы
- •Кинематика
- •Динамика материальной точки
- •Законы сохранения в механике
- •Элементы динамики вращательного движения твердого тела
- •Основы специальной теории относительности
- •Оглавление
- •Уколов Александр Сергеевич
- •Часть 1
4.4. Кинетическая энергия вращающегося твердого тела
Поскольку твердое тело представляет собой частный случай системы материальных точек, то кинетическая энергия тела при вращении вокруг неподвижной оси Z будет равна сумме кинетических энергий всех его материальных точек, то есть
Все
материальные точки
твердого тела вращаются в этом случае
по окружностям с радиусами
и с одинаковыми угловыми скоростями
.
Линейная скорость каждой материальной
точки твердого тела равна
.
Кинетическая энергия твердого тела
примет вид
Сумма в
правой части этого выражения в соответствии
с (4.4) представляет собой момент инерции
этого тела
относительно данной оси вращения.
Поэтому формула для расчета кинетической
энергии вращающегося относительно
неподвижной оси твердого тела примет
окончательный вид:
.
(4.21)
Здесь
учтено, что
Вычисление кинетической энергии твердого тела в случае произвольного движения значительно усложняется. Рассмотрим плоское движение, когда траектории всех материальных точек тела лежат в параллельных плоскостях. Скорость каждой материальной точки твердого тела, согласно (1.44), представим в виде
,
где в
качестве мгновенной оси вращения выберем
ось, проходящую через центр инерции
тела перпендикулярно плоскости траектории
какой-либо точки тела. В этом случае в
последнем выражении
представляет собой скорость центра
инерции тела,
-
радиусы окружностей, по которым вращаются
точки тела с угловой скоростью
вокруг оси, проходящей через центр его
инерции. Так как при таком движении
,
то вектор, равный
,
лежит в плоскости траектории точки.
На основании сказанного выше кинетическая энергия тела при его плоском движении равна
.
Возводя выражение, стоящее в круглых скобках, в квадрат и вынося за знак суммы постоянные для всех точек тела величины, получим
(4.22)
Здесь учтено, что .
Рассмотрим
каждое слагаемое в правой части последнего
выражения отдельно. Первое слагаемое
в силу очевидного равенства
равно
.
Второе
слагаемое равно нулю, так как сумма
определяет радиус-вектор центра инерции
(3.5), который в данном случае лежит на
оси вращения. Последнее слагаемое с
учетом (4.4) примет вид
.
Теперь, окончательно, кинетическая
энергия при произвольном, но плоском
движении твердого тела может быть
представлена в виде суммы двух слагаемых:
,
(4.23)
где первое слагаемое представляет собой кинетическую энергию материальной точки с массой, равной массе тела и движущейся со скоростью, которую имеет центр масс тела;
второе слагаемое представляет собой кинетическую энергию тела, вращающегося вокруг оси (движущейся со скоростью ), проходящей через его центр инерции.
Выводы: Итак, кинетическая энергия твердого тела при его вращении вокруг неподвижной оси может быть вычислена с помощью одного из соотношений (4.21), а в случае плоского движения с помощью (4.23).
Контрольные вопросы.
4.4. В каких случаях (4.23) переходит в (4.21)?
4.5. Как будет выглядеть формула для кинетической энергии тела при его плоском движении, если мгновенная ось вращения не проходит через центр инерции? Каков при этом смысл входящих в формулу величин?
4.6. Покажите, что работа внутренних сил при вращении твердого тела равна нулю.