Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УМК по спортивной метрологии.doc
Скачиваний:
120
Добавлен:
10.11.2019
Размер:
3.46 Mб
Скачать

Шкалы измерений

ТОЧНОСТЬ ИЗМЕРЕНИЙ

Никакое измерение не может быть выполнено абсолютно точно. Результат измерения неизбежно содержит погрешность, величина которой тем меньше, чем точнее метод измерения и измерительный прибор. Например, с помощью обычной линейки с миллиметровыми делениями нельзя измерить длину с точностью до 0,01 мм.

Основная и дополнительная погрешности

Основная погрешность — это погрешность метода измерения или измерительного прибора, которая имеет место в нормальных условиях их применения.

Дополнительная погрешность — это погрешность измерительного прибора, вызванная отклонением условий его работы от нормальных. Понятно, что прибор, предназначенный для работы при комнатной температуре, будет давать неточные показания, если пользоваться им летом на стадионе под палящим солнцем или зимой на морозе. Погрешности измерения могут возникать и в том случае, когда напряжение электрической сети или батарейного источника питания ниже нормы или непостоянно по величине. К дополнительным относится и так называемая динамическая погрешность, обусловленная инерционностью измерительного прибора и возникающая в тех случаях, когда измеряемая величина колеблется необычно быстро. Например, некоторые пульсотахометры (приборы для измерения частоты сердечных сокращений — ЧСС) рассчитаны на измерение средних величин ЧСС и не способны улавливать непродолжительные отклонения частоты от среднего уровня. Величины основной и дополнительной погрешностей могут быть представлены как в абсолютных, так и в относительных единицах.

Абсолютная и относительная погрешности

Величина ДА = АА0, равная разности между показанием измерительного прибора (А) и истинным значением измеряемой величины 0), называется абсолютной погрешностью измерения. Она измеряется в тех же единицах, что и сама измеряемая величина.

Н а практике часто удобнее пользоваться не абсолютной, а относительной погрешностью. Относительная погрешность измерения бывает двух видов — действительной и приведенной. Действительной относительной погрешностью называется отношение абсолютной погрешности к истинному значению измеряемой величины:

П риведенная относительная погрешность — это отношение абсолютной погрешности к максимально возможному значению измеряемой величины:

В тех случаях, когда оценивается не погрешность измерения, а погрешность измерительного прибора, за максимальное значение измеряемой величины принимают предельное значение шкалы прибора. В таком понимании наибольшее допустимое значение выраженное в процентах, определяет в нормальных условиях работы класс точности измерительного прибора. При этом учитывается только основная погрешность. Например, пульсотахометр класса точности 1,0, рассчитанный на измерение ЧСС в диапазоне до 200 уд/мин, может в нормальных условиях работы вносить в измерение погрешность, равную 200 уд/мин • 0,01 = = 2 уд/мин.

Относительные погрешности обычно измеряются в процентах. При этом знак абсолютной погрешности не учитывается: абсолютная погрешность может быть и положительной, и отрицательной, а относительная погрешность всегда положительна.

Систематическая и случайная погрешности

Систематической называется погрешность, величина которой не меняется от измерения к измерению. В силу этой своей особенности систематическая погрешность часто может быть предсказана заранее или в крайнем случае обнаружена и устранена по окончании процесса измерения.

Способ устранения систематической погрешности зависит в первую очередь от ее природы. Систематические погрешности измерения можно разделить на три группы:

1) погрешности известного происхождения и известной величины;

2) погрешности известного происхождения, но неизвестной величины;

3) погрешности неизвестного происхождения и неизвестной величины.

Самые безобидные — погрешности первой группы. Они легко устраняются путем введения соответствующих поправок в результат измерения.

Ко второй группе относятся, прежде всего, погрешности, связанные с несовершенством метода измерения и измерительной аппаратуры. Например, погрешность измерения физической работоспособности с помощью маски для забора выдыхаемого воздуха: маска затрудняет дыхание, и спортсмен закономерно демонстрирует физическую работоспособность, заниженную по сравнению с истинной, измеряемой без маски. Величину этой погрешности нельзя предсказать заранее: она зависит от индивидуальных особенностей спортсмена и его самочувствия в момент исследования.

Другой пример систематической погрешности этой группы — погрешность, связанная с несовершенством аппаратуры, когда измерительный прибор заведомо завышает или занижает истинное значение измеряемой величины, но величина погрешности неизвестна.

Погрешности третьей группы наиболее опасны, их появление бывает связано как с несовершенством метода измерения, так и с особенностями объекта измерения — спортсмена.

Борьба с систематической погрешностью измерения ведется разными способами, из которых следует остановиться на тарировании и калибровке измерительной аппаратуры, а также на методе рандомизации.

Тарированием (от нем. Tarieren) называется проверка показаний измерительных приборов путем сравнения с показаниями образцовых значений мер (эталонов*) во всем диапазоне возможных значений измеряемой величины.

Калибровкой называется определение погрешностей или поправка для совокупности мер (например, набора динамометров). И при тарировании, и при калибровке ко входу измерительной системы вместо спортсмена подключается источник эталонного сигнала известной величины.

Рандомизацией (от англ, random—случайный) называется превращение систематической погрешности в случайную. Этот прием направлен на устранение неизвестных систематических погрешностей. По методу рандомизации измерение изучаемой величины производится несколько раз. При этом измерения организуют так, чтобы постоянный фактор, влияющий на их результат, действовал в каждом случае по-разному. Скажем, при исследовании физической работоспособности можно рекомендовать измерять ее многократно, всякий раз меняя способ задания нагрузки. По окончании всех измерений их результаты усредняются по правилам математической статистики.

Случайные погрешности возникают под действием разнообразных факторов, которые ни предсказать заранее, ни точно учесть не удается. Случайные погрешности принципиально неустранимы. Однако, воспользовавшись методами математической статистики, можно оценить величину случайной погрешности и учесть ее при интерпретации результатов измерения. Без статистической обработки результаты измерений не могут считаться достоверными.