- •Цикл опд
- •1. Режим течения жидкости (ламинарное, турбулентное)
- •2.Понятие Теплопроводности
- •3.Виды теплообмена
- •5.Понятие теплоемкости, энтальпии и энтропии
- •6.Цикл Карно.
- •Кпд тепловой машины Карно
- •Связь между обратимостью цикла и кпд
- •7.Цикл Брайтона
- •9. Методы тепловой защиты поверхностей.
- •10. Лучистый теплообмен
- •11.Понятие теплопередачи и теплоотдачи
- •12. Сопротивление трения и давления
- •13.Понятие о пограничном слое.
- •14.Волновое сопротивление
- •15. Циклы: идеальные и реальные, прямые и обратные Идеальный цикл Карно.
- •16. Типы политропных процессов.
- •17. Свойства идеального газа
- •18.Позиционные и метрические задачи
- •19. Основные аксонометрические проекции
- •20. Изображение и обозначение резьбы
- •22. Оформление рабочих чертежей
- •23. Нанесение размеров на чертеже.
- •24.Обозначение допусков и посадок на чертежах. Гост 2.320-82 Правила нанесения размеров, допусков и посадок конусов
- •2. Нанесение предельных отклонений размеров и допусков конусов
- •3. Нанесение размеров и посадок на конических соединениях
- •25. Понятие механических напряжений в конструкции ла
- •26. Запас прочности
- •27.Сертификация акт.
- •28. Коррозия металлов и способы защиты от нее
- •29.Понятие растяжение-сжатие и чистого сдвига
- •30. Понятие кручения и изгиба.
- •Информатика
- •1. Понятие информации (формы, свойства, разновидности)
- •Свойства информации
- •2. Общая характеристика сбора, передачи, обработки, накопления информации.
- •3.Технические средства реализации информационных технологий.
- •4.Программные средства реализации информационных процессов
- •Алгоритм
- •6. Классификация языков программирования.
- •7.Базы данных: назначение, функции
- •8. Локальные сети эвм
- •9. Глобальные сети эвм.
- •10. Методы и средства обеспечения безопасности информации:
- •11. Антивирусная защита эвм
- •12 . Математическая модель
- •13.Твёрдотельное моделирование.
- •14.Основные типы трехмерных геометрических моделей
- •15. Архитектура и состав эвм
- •16. Требования к математическим моделям.
- •17. Виды обеспечения сапр
- •18. Calls- технологии в жизненном цикле изелия
- •19. Типы данных
- •20. Основные офисные компьютерные технологии
- •21. Программное обеспечение инженерного анализа
- •22. Периферийное оборудование эвм
- •23. Устройства ввода-вывода информации.
- •24.Устройства накопления и хранения информации
- •25. Архивирование информации
- •26. Система счисления
- •27.Классфикация эвм.
- •Аналоговые эвм -не цифровые эвм, обрабатывают информацию не в дискретной, а в непрерывной форме (чаще электрический ток).
- •28.Каналы передачи данных
- •29. Интернет технологии
- •30.Основные операции с данными.
- •Технология
- •1. Конструкционные материалы используемые в акт
- •3.Выбор заготовки и методы их получения
- •4. Обработка поверхностей тел вращения: точение
- •5. Обработка поверхностей тел вращения: шлифование
- •6. Обработка отверстий: сверление, растачивание, зенкерование, развертывание.
- •7. Обработка плоских поверхностей: фрезерование, шлифование, протягивание
- •8. Методы получения наружней и внутренне резьбы
- •9. Обработка корпусных деталей.
- •10. Методы литья деталей.
- •11. Заготовительно-штамповочные процессы
- •12. Сварка и пайка
- •13. Методы контроля качества деталей.
- •14. Влияние технологии обработки материалов на живучесть изделия
- •15. Методы термической обработки
- •Виды термической обработки
- •Примеры
- •16. Формирование защитных покрытий
- •17. Проблемы экономичности и экологичности тех проц.
- •18. Средства измерения и контроля Основные факторы, влияющие на их выбор
- •19. Методы измерения
- •20. Виды размеров. Предельные отклонения. Понятия о допусках и посадках.
- •21.Размерные цепи
- •22. Основные деффекты при изготовлении акт
- •23. Основные деффекты при использовании акт
- •24. Факторы, влияющие на выбор материала
- •25.Средства технологического оснащения производства
- •26. Понятие шероховатости и методы ее измерения
- •27.Виды производства Единичное производство
- •Серийное производство
- •Массовое производство
- •28.Понятие надежности изделия
- •29.Структура технологического процесса
- •30. Методы неразрушающего контроля
- •Конструкция
- •1. Типы ла
- •2. Основные типы дла
- •3.Основные способы создание подъемных сил ла
- •4. Компановка ла
- •Компоновочные схемы
- •Фюзеляж
- •5. Стадии (этапы) проектирования изделий техники
- •6.Основные принципы работы сверхзвукового сопла.
- •8. Основные компоненты топлив
- •11. Сравнительная характеристика насосной и вытеснительной системы подачи топлива
- •14. Компоновка рд
- •Двухконтурный турбореактивный двигатель
- •16. Силы, действующие на ла в полете.
- •17.Основные показатели качества изделий акт
- •18. Состав конструкторской документации
- •19.Силовые элементы ла.
- •20.Стадии жизненного цикла изделия.
- •22. Основные виды разъемных соединений
- •24.Основы работы реактивного двигателя.
- •25. Опасные и вредные факторы полёта акт
- •26. Массовые и габаритные характеристики изделий акт
- •27.Основные задачи, решаемые авиа-космической техникой.
- •Рынки сбыта
- •Особенности авиационно-космической промышленности
- •29. Подшипниковые узлы
- •30. Назначение и типы редукторов
- •Типы редукторов
14.Волновое сопротивление
1)
Волновое
сопротивление (в гидроаэромеханике)
в газовой динамике, дополнительное
аэродинамическое
сопротивление,
возникающее, когда скорость газа
относительно тела превышает скорость
распространения в газе слабых (звуковых)
возмущений (т. е. при сверхзвуковом
течении).
Волновое
сопротивление (в гидроаэромеханике)
является результатом затрат энергии
на образование ударных
волн.
Волновое
сопротивление (в гидроаэромеханике)
в несколько раз превышает сопротивление,
связанное с трением и образованием
вихрей. Коэффициент Волновое
сопротивление (в гидроаэромеханике)
резко увеличивается при приближении
скорости тела v
к скорости звука с
в среде, иначе говоря, при приближении
М-числа
М = v/c
к единице. Сила Волновое
сопротивление (в гидроаэромеханике)
зависит от формы тела, угла атаки и числа
М.
2)
Волновое
сопротивление (в гидроаэромеханике)
в тяжёлой жидкости, одна из составляющих
сил сопротивления жидкости движению
тел. Волновое
сопротивление (в гидроаэромеханике)
возникает при движении тела вблизи
свободной поверхности тяжёлой жидкости
или поверхности раздела жидкостей с
различной плотностью. Волновое
сопротивление (в гидроаэромеханике)
обусловлено образованием на поверхности
жидкости волн, создаваемых движущимся
телом, которое при этом совершает работу
по преодолению реакции жидкости: эта
реакция и представляет собой силу
Волновое
сопротивление (в гидроаэромеханике)
Величина Волновое
сопротивление (в гидроаэромеханике)
зависит от формы тела, глубины его
погружения под свободную поверхность,
скорости движения, а также от глубины
и ширины фарватера, где происходит
движение. Волнообразование при движении
тела зависит от Фруда
числа
(v
-
скорость поступательного движения
тела, l
- его длина, g
-
ускорение силы тяжести), которое является
критерием подобия при моделировании
движений и Волновое
сопротивление (в гидроаэромеханике)
геометрически подобных тел. Если для
тела (судна) и его модели числа Fr
равны, то получается геометрическое
подобие картин волнообразования и
равенство безразмерных коэффициентов
их Волновое
сопротивление (в гидроаэромеханике)
Для определения Волновое
сопротивление (в гидроаэромеханике)
в обоих случаях пользуются как
теоретическими, так и экспериментальными
методами.
15. Циклы: идеальные и реальные, прямые и обратные Идеальный цикл Карно.
С. Карно, наблюдая за действием паровой машины, обратил внимание, что используемый для перемещения цилиндра пар затем выпускается в среду с меньшей температурой, где он превращается в воду (т.н. конденсат) и далее не используется. Карно задумался о возможности использования отработанного конденсата в котел, где он вновь нагреется, превратится в пар, который при своем дальнейшем расширении вновь совершит работу над поршнем. Таким образом, вода пройдет полный цикл. Однако такой непрерывный циклический процесс возможен лишь при наличии двух нагревателей: нагревателя при высокой температуре Т1 и холодильника при Т2.
Рассмотрим схематично идеальный цикл Карно. Он состоит из двух изотермических и двух адиабатических процессов.
Изотермический процесс. Пусть газ, находящийся над поршнем в цилиндре, находится в равновесии с окружающей средой. Будем медленно выдвигать поршень из цилиндра, не нарушая равновесия в каждый данный момент и сохраняя постоянной температуру газа. Этот процесс соответствует закону Бойля-Мариотта PV=const. (на рисунке – переход из точки 1 в точку 2). Заметим, что если опять, медленно возвращая поршень в исходной положение, сжимать газ, система из точки 2 вернется в точку 1, так как изотермический процесс обратим [1].
Адиабатический процесс. Как известно, это процесс без теплообмена с окружающей средой, т.е. процесс в некотором идеально теплоизолированном сосуде. Этот процесс тоже очень медленный, так что температура во время сжатия или расширения выравнивается во всех точках, но меняется в зависимости от объема.
У
равнение
адиабатического процесса PV
g
=
const,
где g
= cp/cv.
Цикл Карно состоит из двух изотермических и двух адиабатических процессов, которые образуют на графике в координатах PV криволинейный четырехугольник (см. рис. 1а). Адиабаты круче изотерм – они образуют боковые линии. Схемы соответствующих процессов приведены на рис. 1б.
Процесс (1)-(2): от нагретого тела с температурой Т1 тепло подводится (при постоянной температуре) к газу, который расширяется при постоянной температуре.
Процесс (2)-(3): газ расширяется в условиях полной теплоизоляции сосуда от окружающей среды.
Процесс (3)-(4): тепло отнимается при изотермическом процессе и отдается холодному телу с температурой Т2.
Процесс (4)-(1), замыкающий цикл соответствует адиабатическому сжатию.
Получается, что в случае цикла Карно КПД при превращении тепла в работу зависит только от температуры нагревателя и холодильника (таким образом, процесс не зависит ни от количества используемого газа, ни от начальных значений давления или объема).
