
- •Закон сохранения заряда. Закон Кулона.
- •Электрическое поле. Напряжённость электрического поля. Принцип суперпозиции электрических полей. Графическое изображение электрических полей.
- •Поле двух бесконечных параллельных разноименно заряженных плоскостей
- •1. Поле равномерно заряженной сферической поверхности
- •2. Поле объемно заряженного шара
- •3. Поле равномерно заряженной бесконечной плоскости
- •4. Поле равномерно заряженного бесконечного цилиндра (нити)
- •6. Работа сил электростатического поля в случае двух точечных зарядов. Потенциал. Потенциал поля, создаваемого системой точечных зарядов.
- •7.Циркуляция вектора напряженности электрического поля. Связь между напряжённостью электростатического поля и потенциалом.
- •8.Эквипотенциальные поверхности, их связь с силовыми линиями.
- •9.Проводники и диэлектрики. Заряженный проводник. Проводник во внешнем электрическом поле.
- •10. Электроёмкость, конденсаторы. Электроёмкость проводящего шара. Ёмкость плоского конденсатора, сферического конденсатора, цилиндрического конденсатора.
- •После интегрирования получим
- •9.2. Параллельное соединение конденсаторов
- •Энергия заряженного конденсатора
- •3.2. Напряженность электростатического поля двух
- •3.3. Поле равномерно заряженной сферической поверхности
- •Электрический диполь
- •Поляризация диэлектрика
- •Электрическое поле в диэлектриках
- •17.Теорема Гаусса для поля вектора поляризации. Теорема Гаусса для поля вектора электрического смещения. Связь между векторами d и e.
- •Сила тока, плотность тока
- •Уравнение непрерывности
- •Закон Ома для однородного участка цепи
- •20,Сторонние силы. Закон Ома для неоднородного участка цепи.
- •21,Работа, мощность, кпд источника тока. Тепловое действие тока. Закон Джоуля-Ленца.
- •22,Переходные процессы в конденсаторах. Правила Кирхгофа.
- •Закон Ома для неоднородного участка цепи запишем в виде
- •Первое правило Кирхгофа
- •23,Источники магнитного поля. Сила взаимодействия, движущихся зарядов.
- •24,Магнитное поле движущего заряда. Магнитный поток.
- •26,Магнитное поле соленоида. Проводник с током в магнитном поле. Взаимодействие параллельных токов. Движение заряженных частиц в магнитном поле. Магнитное поле соленоида
- •27. Закон Био-Савара-Лапласа. Момент сил, действующий на контур с током. Работа перемещения контура с током в магнитном поле.
- •28. Закон электромагнитной индукции. Индуктивность. Явление самоиндукции.
- •3.18. Индуктивность
- •29. Вектор намагничивания. Циркуляция вектора j. Циркуляция вектора н.
- •30. Ток смещения. Уравнения Максвелла в интегральной форме.
- •Свойства уравнений Максвелла:1. Уравнения Максвелла линейны.
- •32. Электромагнитные волны. Поток энергии электромагнитного поля (Вектор Умова-Пойтинга).
- •33. Проводники, диэлектрики и полупроводники в зонной теории. Примесные полупроводники. Понятие сверхпроводимости. Проводники, диэлектрики и полупроводники в зонной теории
- •9.13. Понятие о сверхпроводимости
- •34. Типы магнетиков (Диамагнетизм, парамагнетизм, ферромагнетизм, понятие о петле гистерезиса, применение магнетиков).
- •Парамагнетизм
- •Ферромагнетизм
- •Применение магнетиков
33. Проводники, диэлектрики и полупроводники в зонной теории. Примесные полупроводники. Понятие сверхпроводимости. Проводники, диэлектрики и полупроводники в зонной теории
Зонная теория один из основных разделов квантовой теории твердых тел, которая описывает движение электрона в кристаллах. Согласно этой теории электроны внешних энергетических зон имеют примерно одинаковую свободу движения во всех твердых телах независимо от того, являются они металлами или диэлектриками.
Наличие свободных электронов является лишь необходимым условием проводимости у тел, но не достаточным.
В зонной теории проводники, диэлектрики и полупроводники по электрическим свойствам отличаются расположением разрешенных и запрещенных зон энергии и заполнением этих зон электронами.
Чем больше энергия электрона в изолированном атоме, тем шире разрешенная зона и меньше ширина запрещенной зоны.
Рис.
5.23
Следующая за валентной зоной свободная зона или частично заполненная электронами при Т = 0 К, называется зоной проводимости.
Электропроводность твердого тела зависит не от числа валентных электронов, а от отношения числа электронов в зоне проводимости к общему числу энергетических уровней в этой зоне.
К проводникам относятся тела, у которых над полностью заполненной электронами валентной зоной располагается частично заполненная электронами зона проводимости.
Такие зоны возникают в том случае, если энергетический уровень, из которого она возникает, заполнен в атоме не полностью, например, у щелочных элементов и металлов (рис. 5.23, а).
Частично заполненная электронами зона может образоваться изза перекрытия валентной зоны и зоны проводимости (гибридная зона), что имеет место у бериллия и щелочноземельных элементов (рис. 5.23, б).
Следовательно, достаточным условием проводимости тел является наличие в их энергетическом спектре разрешенных зон, заполненных электронами лишь частично.
Поэтому даже слабое электрическое поле способно перевести электроны на свободные энергетические уровни в зоне проводимости, т. е. появится электрический ток.
К диэлектрикам и полупроводникам относятся тела, у которых при Т = 0 К над полностью заполненными электронами валентными зонами находятся свободные зоны (зоны проводимости). Эти зоны разделены широкими запрещенными зонами. К ним относятся химические элементы, например, алмаз, кремний, германий, а также многие химические соединения окислы металлов, нитриды и т. д. К диэлектрикам относятся вещества, у которых валентная зона отделена от зоны проводимости широкой запрещенной зоной (W 23 эB).
Рис.
5.24
Например, у германия ширина запрещенной зоны W = 0,66 эB, у кремния W = 1,08 эB, у арсенида галлия W =1,4 эB (рис. 5.24, б).
Под действием электрического поля напряженностью Е = 105 В/м (обычные источники тока) может быть сообщена электронам энергия W 103 эВ, что значительно меньше ширины запрещенной зоны в диэлектриках и полупроводниках. В табл. 5.1 приведены значения ширины запрещенной зоны (энергии активации) W и концентрации электронов n в металлах, диэлектриках и полупроводниках.
Таблица 5.1
W, эВ
|
10 |
5 |
3 |
2 |
1 |
0,75 |
0,5 |
0,1 |
0,01 |
|||
n, м 3
|
1059 |
1029 |
10 |
108 |
1017 |
1019 |
1021 |
1024 |
1029 |
|||
|
Диэлектрики |
Полупроводники |
Металлы |