Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Теор и мет стат прогн 2008.doc
Скачиваний:
38
Добавлен:
28.09.2019
Размер:
3.15 Mб
Скачать

5.3. Выбор начальных условий и определение постоянной сглаживания

Как следует из выражения

,

при проведении экспоненциального сглаживания необходимо знать начальное (предыдущее) значение сглаживаемой функции. В некоторых случаях за начальное значение можно взять первое наблюдение, чаще начальные условия определяются согласно выражениям (5.4) и (5.5). При этом величины , и определяются методом наименьших квадратов.

Если мы не очень доверяем выбранному начальному значению, то, взяв большое значение постоянной сглаживания через k наблюдений, мы доведем «вес» начального значения до величины , и оно будет практически забыто. Наоборот, если мы уверены в правильности выбранного начального значения и неизменности модели в течение определенного отрезка времени в будущем, может быть выбрано малым (близким к 0).

Таким образом, выбор постоянной сглаживания (или числа наблюдений в движущейся средней) предполагает принятие компромиссного решения. Обычно, как показывает практика, величина постоянной сглаживания лежит в пределах от 0,01 до 0,3.

Известно несколько переходов, позволяющих найти приближенную оценку . Первый вытекает из условия равенства скользящей и экспоненциальной средней

,

где m – число наблюдений в интервале сглаживания. Остальные подходы связываются с точностью прогноза.

Так, возможно определение исходя из соотношения Мейера:

,

где – среднеквадратическая ошибка модели;

– среднеквадратическая ошибка исходного ряда.

Однако использование последнего соотношения затруднено тем, что достоверно определить и из исходной информации весьма сложно.

Часто параметр сглаживания, а заодно и коэффициенты и подбирают оптимальными в зависимости от критерия

путем решения алгебраической системы уравнений, которую получают, приравнивая к нулю производные

; ; .

Так, для линейной модели прогнозирования исходный критерий равен

.

Решение этой системы с помощью ЭВМ не представляет никаких сложностей.

Для обоснованного выбора также можно использовать процедуру обобщенного сглаживания, которая позволяет получить следующие соотношения, связывающие дисперсию прогноза и параметр сглаживания для линейной модели:

для квадратичной модели

,

где ; – СКО аппроксимации исходного динамического ряда.

  1. 6. Вероятностные методы прогнозирования

Часто на практике приходится иметь дело с задачей прогнозирования случайных величин, и это является предпосылкой применения вероятностных моделей. Вероятностные модели позволяют вычислить вероятность того, что будущее значение параметра прогнозируемого процесса будет меньше определенного числа, например, вероятность того, что

.

Величина y может находиться в пределах так, как в соответствии с рис. 6.1 и

Рис. 6.1. Функция распределения вероятностей

Показанная на рисунке кривая распределения непрерывной случайной величины y является графиком функции распределения . Функция распределения существует как для непрерывных, так и для дискретных случайных величин и является универсальной характеристикой случайных величин.

Зная функцию распределения, можно найти вероятность попадания случайной величины на заданный участок :

.

Для непрерывных случайных величин очень часто рассматривается

производная функции распределения

,

или плотность распределения непрерывной случайной величины y. Вероятность попадания случайной величины y на некоторый участок

.

Таким образом, прогнозирование вероятности того или иного события может быть осуществлено при прогнозировании рассмотренных функций распределения. Причем во многих практических случаях нет необходимости характеризовать случайную величину полностью, а бывает достаточно спрогнозировать только некоторые параметры распределения (например, математическое ожидание и дисперсию).

В некоторых случаях полученные в результате наблюдений за прогнозируемым процессом данные могут быть описаны широкоизвестными распределениями непрерывных и дискретных случайных величин, среди которых: нормальное распределение, равномерное распределение, экспоненциальное распределение, распределение Пуассона и некоторые другие.

Если вид и параметры названных распределений не меняются по времени и в распоряжении имеется достаточное по объему количество наблюдений, то решение задачи прогнозирования не вызывает особых затруднений. Строится эмпирическое распределение, решается вопрос о выборе для данного эмпирического распределения теоретической кривой распределения и по ней с требуемой точностью производится прогнозирование. Однако на практике, как правило, в распоряжении исследователя имеется ограниченная информация о процессе и, кроме того, не всегда можно гарантировать неизменность вида и параметров распределения. Эти условия предопределяют применение более сложных вероятностных моделей, базирующихся на последних достижениях теории вероятностей. К таким наиболее интенсивно разрабатываемым областям теории вероятностей относятся, в частности, теория малых выборок и теория суммирования случайного числа независимых случайных величин.