Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Копия 3_1isp.doc
Скачиваний:
59
Добавлен:
28.09.2019
Размер:
8.4 Mб
Скачать

1. Лазерный нагрев материалов

1.1. Общая характеристика нагревания лазерным излучением

Лазерный нагрев по своей физической сущности не отличается от других видов нагрева. Как и при любом другом нагревании, однозначной характеристикой теплового действия является температура, а сам нагрев состоит в увеличении амплитуды тепловых колебаний решетки.

Специфика лазерного нагрева заключается в том, что температур может быть несколько. Энергия, поглощенная электронами, приводит к росту температуры электронов (в металлах - электронного газа). Затем, в результате взаимодействия разогретых электронов с решеткой увеличивается ее температура. Такое рассмотрение, при котором вводят отдельные температуры для подсистемы электронов и решетки и рассматривают взаимодействие этих подсистем, справедливо при пикосекундных длительностях лазерного импульса и плотностях поглощенного светового потока менее 1010 Вт/см2. При более интенсивном и менее продолжительном воздействии использование понятия температуры становиться некорректным, поэтому необходимо вводить функцию распределения электронов по скоростям и энергиям. Анализ функции распределения частиц по энергиям должен учитывать их взаимодействие друг с другом и с возбуждающим излучением. Такой подход требует решения кинетических уравнений (уравнения Больцмана – это интегро-дифференциальные уравнения).

В подавляющем большинстве практических задач тепловой подход является вполне адекватным. То есть можно считать, что устанавливающееся под действием лазерного излучения распределение частиц по энергиям является квазиравновесным. Это позволяет ввести понятия температуры для каждой из подсистем.

Для лазерного нагрева характерны большая скорость нагрева и большие пространственные градиенты температуры, что может привести и приводит к значительным отличиям в протекании процессов, стимулированных лазерным нагреванием.

1.1.1. Тепловые эффекты в конденсированных средах

При лазерном воздействии на материалы наблюдается многообразие процессов и явлений, приводящих к изменению их (материалов) оптических ( , , ), электрических ( , ) характеристик, структуры и фазового состава.

Отметим основные физико-химические явления, представляющие наибольший практический интерес при решении инженерных задач в технологии лазерной обработки материалов.

Плавление. При облучении кристаллического или поликристаллического твердого тела лазерным излучением достаточной плотности мощности (при подводе достаточного количества тепла) его температура может возрасти до температуры плавления . Температуры плавления различных материалов сильно различаются примерно от 500 К для легкоплавких металлов (свинец, олово) до 3300 К для тугоплавких (вольфрам, платина). Соответственно меняется как количество теплоты, которое необходимо для нагревания металла от комнатной температуры до температуры плавления, так и скрытая теплота фазового перехода твердое тело – расплав . При этом роль скрытой теплоты плавления, т.е. теплоты, необходимой для разрушения кристаллической решетки тела, тем больше, чем ниже температура плавления. Если жидкая фаза немедленно удаляется из зоны воздействия, процесс разрушения материала называется абляцией.

Целью теоретическою анализа процесса плавления является определение толщины расплавленного слоя и продолжительности плавления до момента начала интенсивного испарения материала при температуре . Знание этих параметров процесса плавления весьма важно при использовании лазерного излучения для импульсной и непрерывной сварки.

Испарение. Жидкая фаза, образовавшаяся при плавлении твердого тела, может быть нагрета до температуры испарения . Фазовый переход жидкость – пар происходит при подводе в зону воздействия количества теплоты, равного теплоте испарения или большего. Для ряда материалов (полупроводники и диэлектрики), у которых процесс теплового разрушения протекает без образования жидкой фазы, происходит фазовый переход твердое тело – пар, называемый сублимацией. Испарение материалов может протекать в виде кипения, для которого характерно возникновение и рост пузырьков насыщенного пара в расплаве вблизи поверхности нагрева.

Для ряда материалов (древесина, минералы) интенсивный лазерный нагрев ведет к испарению связанной (кристаллизационной) воды или других жидких компонентов. Подобные легкоиспаряемые продукты создают высокое давление в зоне нагрева, что приводит к образованию микротрещин, выбросу частиц материала, перестройке его структуры (надмолекулярной и химической).

При анализе лазерного испарения материалов очень важен вопрос об "энергетической организации" процесса. При малых плотностях мощности поглощенного лазерного излучения ( 108 Вт/м2) разрушение практически всех металлов связано с процессами плавления и абляции. Доля газовой фазы в продуктах разрушения невелика. Увеличение мощности лазерного излучения ведет к росту температуры материала ( ), соответственно возрастает и роль испарения в процессе разрушения. Физическая модель, описывающая процесс испарения, довольно сложна, особенно при 1013 Вт/м2. В частности, трудно определить долю рассеянного и поглощенного лазерного излучения в облаке пара вблизи поверхности, учесть взрывные эффекты и взаимодействие различных фаз в зоне обработки.

Кристаллизация. Тепловое действие поглощенного лазерного излучения сопровождается не только нагреванием, плавлением и испарением металла. Оно может приводить к изменению структуры и свойств материала в зоне обработки. Характер этих изменений зависит от свойств облучаемого материала, мощности поглощенного излучения, скорости нагрева и охлаждения.

При лазерном воздействии кристаллизация расплава может приводить либо к образованию материалов с другим типом кристаллической решетки либо структурированием аморфных тел. При этом происходит выделение удельной теплоты кристаллизации в зоне воздействия (при фазовом переходе жидкость – твердое тело она равна ).

Термохимические реакции. Лазерный нагрев веществ может стимулировать протекание необратимых химических реакций, которые вызывают ускорение процесса разрушения материала. Большой тепловой вклад экзотермических реакций, инициируемых в зоне нагрева, приводит к воспламенению материала, которое может перейти в автономный режим. При этом материал воспламеняется в области, размеры которой многократно превосходят зону облучения.

Кроме того, воздействие лазерного излучения на металлы стимулирует развитие термохимических реакций, с помощью которых можно восстанавливать металлы, разлагая сложные соединения, синтезировать новые материалы, окислять поверхность. При этом существенно меняются оптические свойства материалов (поглощательная способность) вследствие изменения физико-химических свойств поверхности.

В случаях окисления металлов в среде воздуха или кислорода основными механизмами, изменяющими поглощательную способность являются:

1) непосредственное дополнительное поглощение в окисле;

2) согласующее действие окисной пленки при поглощении света и интерференционные эффекты;

3) изменение частоты столкновений и плазменной частоты свободных электронов в скин-слое;

4) изменение состава и оптических постоянных сплавов в пределах скин-слоя в результате избирательного окисления некоторых его компонент.

Взаимосвязь физических процессов, сопровождающих процесс воздействия лазерного излучения на материалы, изображена на рис. .1.

Очевидно, что совокупность физических процессов в зоне воздействия определяется температурой, скоростью и временем нагрева, скоростью охлаждения материала, которые, в свою очередь, зависят от геометрических и энергетических характеристик лазерного излучения, свойств обрабатываемого материала, массы облучаемого изделия, технологических схем обработки и т.д.

Поэтому основными целями при анализе лазерного нагревания будут:

- оценка темпа разогрева и характерных масштабов прогрева вглубь и в стороны (теплофизика процесса);

- выявление и анализ физико-химических процессов, происходящих во время воздействия, и описание их воздействия на нагревание.

Рис. 1.1. Взаимосвязь физических процессов при воздействии лазерного излучения па материалы