Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Ответы на вопросы по Теории Вероятности.doc
Скачиваний:
43
Добавлен:
27.09.2019
Размер:
1.64 Mб
Скачать

32 Законы распределения отдельных случайных величин, входящих в систему.

Пусть имеется система случайных величин (X, Y), причем известна ее функция распределения F(X, Y) или плотность распределения f(x, y). Требуется найти законы распределения случайных величин X, Y, входящих в систему, т.е. определить выражения для функций .

Согласно второму свойству функции распределения случайных величин X, Y равны . Поэтому для получения функции распределения одной случайной величины, входящей в систему необходимо в функцию распределения системы вместо другой случайной величины подставить « ». Для отыскания выражения плотности распределения, например, случайной величины X воспользуемся определением ее, т.е.

, или окончательно

. По аналогии .

Следовательно, для получения плотности распределения одной случайной величины, входящей в систему, необходимо плотность распределения системы f(x, y) проинтегрировать в бесконечных пределах по другой случайной величине как переменной.

Пример 1. Дана система случайных величин (X, Y) с плотностью распределения для всех точек внутри треугольника (рис. 3.7а), вне треугольника f(x, y)=0. Требуется определить .

Рисунок 3.7 Иллюстрация к примеру

Решение.

Используя полученное выражение для плотности распределения случайной величины X, получим . Аналогично находим выражение для плотности распределения случайной величины Y (см. рис. 3.7б).

33 Условные законы распределения случайных величин.

Ранее были получены формулы для нахождения плотностей распределения составляющих величин по плотности распределения системы двух случайных величин f(x, y).

В ряде случаев бывает необходимо определять плотность распределения системы двух случайных величин f(x, y) по известным плотностям распределения отдельных случайных величин , входящих в систему.

Для решения этой задачи кроме плотностей распределения отдельных случайных величин необходимо знать их взаимные связи и зависимость между ними. Эта зависимость характеризуется условными законами распределения, которые являются аналогами условных вероятностей.

Условным законом распределения случайной величины X, входящей в систему (X, Y) называют ее закон распределения, вычисленный при условии, что другая случайная величина Y приняла определенное значение y.

Условные функции распределения случайных величин X и Y будем обозначать через F(x/y) и F(y/x) соответственно, а условные плотности распределения – через f(x/y) и F(y/x).

Постановка задачи. Пусть имеется система случайных величин (X, Y), причем известна ее плотность распределения f(x, y). Требуется найти условную плотность распределения f(x/y) случайной величины X при условии, что случайная величина Y приняла определенное значение y.

Для решения задачи рассмотрим элементарный прямоугольник со сторонами d x, d y (рис. 3.8).

Рисунок 3.8 Элементарный прямоугольник со сторонами d x, d y

Обозначим через C – событие попадания случайной точки в прямоугольник C, через A - событие попадания случайной точки в полосу A, а через B - событие попадания случайной точки в полосу B.

Так как событие C является произведением событий A и B, поскольку может произойти только при появлении и события A и события B, то вероятность события C можно определить с помощью теоремы произведения зависимых событий, т.е.

.

Откуда , но и .

Тогда . Разделив обе части этого равенства на , получим . В этом выражении отношение , так как оно представляет собой количество условной вероятности, приходящейся на единицу длины случайной величины X, т.е. является условной плотностью распределения случайной величины X, при условии, что случайная величина Y приняла определенное значение y.

Следовательно,

, а .

Пример 3. В условиях примера 1 определить условную плотность распределения f(x/y) случайной величины X.

Решение. Так как , , , то

, т.е. .

Если случайные величины дискретные, то вместо условных плотностей распределения определяются условные вероятности

, а .