Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Posobie_Teoria_veroyatnostey.doc
Скачиваний:
38
Добавлен:
26.09.2019
Размер:
1.48 Mб
Скачать

Свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

М (С) = С.

2. Постоянный множитель можно выносить за знак математического ожидания:

М (СХ) = СМ (X).

3. Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий:

M(XY) = M(X)M(Y).

Пример 4.8. Независимые случайные величины X и Y заданы следующими законами распределения:

Х

5

2

4

Y

7

9

Р

0,6

0,1

0,3

Р

0,8

0,2

Найти математическое ожидание случайной величины XY.

Решение.

Найдем математические ожидания каждой из данных величин:

Случайные величины X и Y независимые, поэтому искомое математическое ожидание:

M(XY) = M(X)M(Y)=

Следствие. Математическое ожидание произведения нескольких взаимно независимых случайных величин равно произведению их математических ожиданий.

4. Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий слагаемых:

М (X + Y) = М (X) + М (Y).

Следствие. Математическое ожидание суммы нескольких случайных величин равно сумме математических ожиданий слагаемых.

Пример 4.9. Производится 3 выстрела с вероятностями попадания в цель, равными р1 = 0,4; p2 = 0,3 и р3 = 0,6. Найти математическое ожидание общего числа попаданий.

Решение.

Число попаданий при первом выстреле есть случайная величина Х1, которая может принимать только два значения: 1 (попадание) с вероятностью р1 = 0,4 и 0 (промах) с вероятностью q1 = 1 – 0,4 = 0,6.

Математическое ожидание числа попаданий при первом выстреле равно вероятности попадания:

Аналогично найдем математические ожидания числа попаданий при втором и третьем выстрелах:

М(Х2) = 0,3 и М(Х3)=0,6.

Общее число попаданий есть также случайная величина, состоящая из суммы попаданий в каждом из трех выстрелов:

Х = Х1 + Х2 + Х3.

Искомое математическое ожидание Х находим по теореме о математическом, ожидании суммы:

М(X) = M(Xl + X2 + X3) = M(X1) + M(X2) + M (X3) = 0,4 + 0,3 + 0,6 = 1,3 (попаданий).

4.6. Дисперсия случайной величины. Среднее квадратическое отклонение

Мы рассмотрели число, которое характеризует поведение случайной величины в среднем. Но среднее значение далеко не всегда дает даже общее представление о поведении случайной величины.

Есть еще одна характеристика, которая зачастую несет не менее важную информацию, — это разброс (или рассеивание) случайной величины вокруг ее среднего значения. Вспомним известную шутку о том, что средняя температура по больнице, 36,6°. Ведь это вполне может быть так, если часть больных имеет повышенную температуру, а часть пониженную. Тогда чем же будет отличаться поведение случайной величины, равной температуре больного человека, от поведения величины, равной температуре здорового? И та, и другая величины подвержены колебаниям вокруг некоторого среднего значения (возможно, даже одинакового), но очевидно, что у больных величина этих колебаний будет больше. Попробуем выяснить, какое выражение может претендовать на роль средней меры рассеивания случайной величины вокруг ее среднего значения.

Дисперсией случайной величины называется математическое ожидание квадрата ее отклонения:

Дисперсия дискретной случайной величины вычисляется по формуле:

или

Средним квадратическим отклонением (стандартом) случайной величины называется арифметический корень из дисперсии, т.е.

Пример 4.10. Найти дисперсию числа очков, выпадающих при бросании игральной кости.

Решение:

Закон распределения случайной величины Х и ее математическое ожидание М(Х) = 3,5 были приведены в примере 4.7.

Вычислим дисперсию:

Дисперсия непрерывной случайной величины определяется равенством:

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]