
- •1. Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.
- •Доказательства роли ядра и хромосом в явлениях наследственности. Локализация генов в хромосомах.
- •4. Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.
- •5. Кариотип. Специфичность морфологии и числа хромосом.
- •6. Молекулярные основы наследственности. Концепция «один ген - один полипептид». Белок как элементарный признак.
- •7. Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура днк и рнк. Модель днк Уотсона и Крика.
- •8. Функции нуклеиновых кислот в реализации генетической информации: репликация, транскрипция и трансляция. Методологическое значение принципа передачи генетической информации: днк —* рнк —* белок.
- •9. Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов.
- •10.Строение хромосом: хроматида, хромомеры, эухроматические и гетерохроматические
- •11.Изменения в организации морфологии хромосом в ходе митоза и мейоза. Репликация
- •12.Молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина:
- •13.Цели и принципы генетического анализа. Методы: гибридологический, мутационный,
- •14.Закономерности наследования при моногибридпом скрещивании, открытые г.
- •15.Представление об аллелях и их взаимодействиях: полное и неполное доминирование,
- •17.Закономерности наследования в ди- и полигибридных скрещиваниях, при моногенном
- •18.Неаллельные взаимодействия. Биохимические основы неаллельных взаимодействий.
- •19.Особенности наследования количественных признаков (полигенное наследование).
- •20.Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения
- •21.Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при не расхождении половых хромосом.
- •22.Значение работ школы т. Моргана в изучении сцепленного наследования признаков.
- •23.Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на
- •24. Множественные перекресты. Интерференция. Линейное расположение генов в
- •25.Генетические карты, принцип их построения у эукариот. Цитологические карты
- •26.Особенности микроорганизмов как объекта генетических исследований. Организация
- •28.Особенности процессов, ведущих к рекомбинации у прокариот. Конъюгация у
- •29.Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и
- •30.Закономерности нехромосомного наследования, отличие от хромосомного
- •31.Материнский эффект цитоплазмы. Пластидная наследственность. Митохондриальная
- •32.Наследование дыхательной недостаточности у дрожжей и нейроспоры.
- •33.Инфекционные факторы внеядерной наследственности. Плазмидное наследование.
- •34.Понятие о наследственной и ненаследственной (модификационной) изменчивости.
- •35.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и
- •36.Геномные изменения: полиплоидия. Автополиплоиды, особенности мейоза и характер
- •37.Геномные изменения: анеуплоидия. Анеуплоидия: нуллисомики, моносомики,
- •38.Хромосомные перестройки. Внутри- и межхромосомные перестройки. Особенности
- •39.Классификация генных мутаций. Общая характеристика молекулярной природы
- •40.Спонтанный и индуцированный мутационный процесс. Многоэтапность и
- •41.Химический мутагенез. Особенности мутагенного действия химических агентов.
- •42.Представление школы Моргана о строении и функции гена. Функциональный и
- •43.Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональней тест на аллелизм (цис-транс тест).
- •44.Исследование тонкой структуры гена на примере фага т4 (Бензер). Ген как единица функции (цистрон).
- •45.Интрон-экзонная организация генов эукариот, сплайсинг. Структурная организация генома эукариот. Классификация повторяющихся элементов генома.
- •46.Семейства генов. Псевдогены. Регуляторные элементы генома.
- •47.Генетический контроль и молекулярные механизмы репликации. Полигенный контроль процесса репликации. Схема событий в вилке репликации. Понятие о репликоне.
- •48.Системы рестрикции и модификации. Рестрикционные эндонуклеазы.
- •49.Проблемы стабильности генетического материала. Типы структурных повреждений в днк и репарационные процессы.
- •51.Рекомбинация: гомологический кроссинговер, сайтспецифическая рекомбинация, транспозиции. Доказательство механизма общей рекомбинации по схеме «разрыв-воссоединение».
- •5 2. Молекулярная модель рекомбинации по Холлидею. Генная конверсия. Сайт-специфическая рекомбинация: схема интеграции и исключения днк фага лямбда.
- •53.Механизмы спонтанного мутагенеза, гены мутаторы и антимутаторы. Понятие о мутагенных индуцибельных путях репарации; уф-мутагенез.
- •54.Принципы негативного и позитивного контроля. Оперонные системы регуляции (теория Жакоба и Моно). Генетический анализ лактозного оперона.
- •55.Регуляция транскрипции на уровне терминации на примере триптофанового оперона. Системная регуляция; роль циклической амф и гуанозинтрифосфата.
- •56.Принципы регуляции действия генов у эукариот. Регуляторная роль, гистонов, негистоновых белков, гормонов. Особенности организации промоторной области у эукариот.
- •57.Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов. Роль гомейозисных генов в онтогенезе.
- •58.Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •59.Тканеспецифическая активность генов. Функциональные изменения хромосом в онтогенезе (пуффы, «ламповые щетки»); роль гормонов, эмбриональных индукторов.
- •60. Применение метода соматической гибридизации для изучения процессов дифференцировки и для генетического картирования. Химерные (аллофенные) животные.
- •61. Совместимость и несовместимость тканей. Генетика иммунитета. Онкогены, онкобелки.
- •62. Задачи и методология генетической инженерии. Методы выделения и синтеза генов.
- •63.Понятие о векторах. Векторы на основе плазмид и днк фагов. Геномные библиотеки. Способы получения рекомбинантных молекул днк, методы клонирования генов.
- •65.Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •66. Понятие о виде и популяции. Понятие о частотах генов и генотипов. Математические модели в популяционной генетике. Закон Харди - Вайнберга, возможности его применения.
- •67. Методы изучения природных популяций. Факторы динамики генетического состава популяции (дрейф генов), мутационный процесс, межпопуляционные миграции, действие отбора.
- •68.Взаимодействие факторов динамики генетической структуры в природных популяциях. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •70.Молекулярно-генетические основы эволюции. Задачи геносистематики. Значение генетики популяций для медицинской генетики, селекции решения проблем сохранения генофонда и биологического разнообразия.
- •71.Предмет и методология селекции. Учение об исходном материале. Центры происхождения культурных растений по н.И. Вавилову. Понятие о породе, сорте, штамм.
- •73.Использование индуцированных мутаций и комбинативной изменчивости в селекции растений, животных и микроорганизмов. Роль полиплоидии в повышении продуктивности растений.
- •75.Явление гетерозиса и его генетические механизмы. Использование простых и двойных межлинейных гибридов и растениеводстве и животноводстве.
- •77.Особенности человека как объекта генетических исследований. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный.
77.Особенности человека как объекта генетических исследований. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный.
Система опытов с целью разложения признаков организма на отдельные элементы и изучение соответствующих им генов носит название «генетический анализ». Основной принцип генетического анализа - принцип анализа единичных признаков, согласно которому на первом этапе рассматриваются поколения по каждому признаку отдельно, независимо от других признаков. Задачи генетического анализа: установление гена; изучение его свойств путем изучения его действия на признаки в различных комбинациях с другими генами; установление сцепления гена с другими генами, ранее установленными; определение расположения гена среди других, сцепленных с ним. Объект генетического анализа – физиология гена: структура, воспроизведение, механизм действия и изменчивость.
Гибрид.метод – это анализ хар-ра наследования признаков с помощью системы скрещивания, суть к-ых состоит в получ-й гибридов и анализе их потомков в ряду поколении. Эта схема гибрид.анализа вкл-т: подбор материала для получения гибридов, скрещиваний между собой и анализа след.поколении.
Гибрид. метод Г. Менделя имеет след-ие особенности:
1) анализ нач-ся со скрещивания гомозиготных особей («чистые линии»);
2) анализ-ются отдельные альтернативные (взаимоисключающие) признаки;
3) проводится точный количественный учет потомков с различной комбинацией признаков (исп-ся математические методы);
4) наследование анализируемых признаков прослеживается в ряду поколений.
Мендель также предложил систему записей скрещивания. В наст.время гибрид.анализ яв-ся частью ген.анализа, позволяющего опр-ть хар-р наследования изучаемого признака, выяс-ть локализацию генов.
Генеалогический метод - относящийся к числу основных в генетике человека, этот метод опирается на генеалогию — учение о родословных. Его сутью является составление родословной и последующий ее анализ. Впервые такой подход был предложен английским ученым Ф. Гальтоном в 1865 г.
Близнецовый метод - это метод изучения генетических закономерностей на близнецах. Впервые он был предложен Ф. Гальтоном в 1875 г. Близнецовый метод дает возможность определить вклад генетических (наследственных) и средовых факторов (климат, питание, обучение, воспитание и др.) в развитии конкрет ных признаков или заболеваний у человека.
Популяционно-статистический метод - одним из важных направлений в современной генетике является популяционная генетика. Она изучает генетическую структуру популяций, их генофонд, взаимодействие факторов, обусловливающих постоянство и изменение генетической структуры популяций.
Цитогенетический метод - основа метода — микроскопическое изучение хромосом человека. Цитогенетические исследования стали широко использоваться с начала 20-х гг. ХХ в. для изучения морфологии хромосом человека, подсчета хромосом, культивирования лейкоцитов для получения метафазных пластинок.
Биохимический метод - причиной многих врожденных нарушений метаболизма являются различные дефекты ферментов, возникающие вследствие изменяющих их структуру мутаций. Использование современных биохимических методов (электрофореза, хроматографии, спектроскопии и др.) позволяют определять любые метаболиты, специфические для конкретной наследственной болезни.
Мутационный метод - выявление эффекта мутации, оценка мутагенной опасности отдельных факторов и окружающей среды. Поиск неизвестных мутаций и выявление известных мутаций - это разные диагностические задачи. Крупные мутации легче обнаружить. Блоттинг по Саузерну и полимеразная цепная реакция позволяют выявить увеличение числа тринуклеотидных повторов, делеции, вставки и другие перестройки ДНК. Также мутационный метод позволяет выявить любую мутацию, существенно снижающую уровень мРНК.
7 8. Использование метода гибридизации соматических клеток для генетического картирования. Изучение структуры и активности генома человека с помощью методов молекулярной генетики. Программа «Геном Человека».
В основе метода лежит слияние клеток, в результате чего образуются гетерокарионы, содержащие ядра обоих родительских типов. Образовавшиеся гетерокарионы дают начало двум одноядерным гибридным клеткам. В 1965 английский ученый Г. Харрис впервые получил гетерокарионы, образованные клетками мыши и человека. Такую искусственную гибридизацию можно осуществлять между соматическими клетками, принадлежащими далеким в систематическом отношении организмам и даже между растительными и животными клетками. Гибридизация соматических клеток животных сыграла важную роль в исследовании механизмов реактивации генома покоющейся клетки и степени фенотипического проявления (экспрессивности) отдельных генов, клеточного деления, в картировании генов в хромосомах человека, в анализе причин злокачественного перерождения клеток. С помощью этого метода созданы гибридомы, используемые для получения моноклональных (однородных) антител.
Существование многих национальных программ изучения генома человека вызвало к жизни и некоторые проблемы, главными из которых были координация усилий и распространение полученных результатов. Для решения этих проблем была создана международная организация HUGO (HUman Genome Organisation). Предложение об организации международного органа, выполняющего функции координации усилий ученых разных стран в деле изучения генома человека было впервые сделано на первом симпозиуме в Колд-Спринг Харбор по картированию и секвенированию генома человека Виктором Мак-Кьюзиком (Dr. Victor McKusick). Оно было принято, и уже в 1989 г. HUGO была зарегистрирована в Женеве и в Делавэре (США) [ Bodmer W.f., 1991 ].
Целями организации являются:
помощь в координации исследований генома человека, в особенности организация сотрудничества между учеными с целью избежать ненужной конкуренции или дублирования усилий;
координация работ по геному человека с работами по изучению модельных организмов; координация и поощрение обмена информацией и биологическими материалами, относящимися к исследованию генома человека;
содействие распространению соответствующих технологий путем организации учебных программ;
поощрение широкого обсуждения программы исследований, предоставление информации о результатах исследований и их возможном применении, о научных, юридических, этических, социальных и коммерческих аспектах изучения генома человека.
HUGO организована по образцу академий, т.е. ее члены выбираются из числа известных ученых. В ее рамках созданы и действуют 6 комитетов: по Международным Школам по картированию генома человека; по физическому картированию; по информатике; по картированию генома мыши; по этическим, юридическим и социальным аспектам; по интеллектуальной собственности.
Следует отметить, что столь масштабная задача, как изучение генома человека, вызвала к жизни новые формы организации научных исследований, дало мощный толчок развитию международного сотрудничества. Впервые, пожалуй, такие большие научные силы задействованы для получения базовой, "справочной" информации, которая в полной мере может быть использована еще не скоро. Вероятно, не будет преувеличением сказать, что это очень изменило психологический климат молекулярной биологии.
79.Врожденные и наследственные болезни, их распространение в человеческих популяциях. Причины возникновения наследственных и врожденных заболеваний. Хромосомные и генные болезни. Болезни с наследственной предрасположенностью. Скрининг генных дефектов.
До XX века главной проблемой медицины были инфекционные заболевания. Они уносили миллионы человеческих жизней. Открытие антибиотиков вложило в руки медиков эффективное орудие борьбы со многими инфекциями. Современные методы восстановительного лечения травматических повреждений, создание педиатрической службы и системы родовспоможения позволили снизить смертность среди подобных пациентов. В настоящее время медицинским работникам все чаще приходится иметь дело с наследственной патологией. Эти заболевания могут с высокой вероятностью явиться причиной инвалидности или преждевременной гибели пациента.
Наследственные болезни — это патологические состояния, в основе которых изменение наследственного материала (т.е. мутация). В развитии таких заболеваний главную роль играют нарушения в структуре гена или хромосомы. Кроме того, к наследственной патологии относят также болезни с наследственной предрасположенностью — мулътифакториалъные заболевания. Они возникают как результат совместного действия факторов внешней среды и специфического набора генов, который создает условия, способствующие развитию патологического процесса.
Любой медицинский работник сталкивается в своей практике с наследственной патологией. По данным Всемирной организации здравоохранения 5-8% новорожденных имеют такие заболевания. Из них около 3% нарушений состояния здоровья ребенка вызваны генными мутациями, 0,8—1% связаны с изменением хромосом, 2,5-3,5% случаев — врожденные пороки развития и около 1,5 % — мульти-факториальные болезни. В нашей стране примерно 3 миллиона человек страдают наследственными заболеваниями. Они нуждаются в постоянной медицинской помощи, социальной защите, поскольку часто являются инвалидами. Наследственные заболевания могут привести к преждевременной гибели человека. Так, примерно 50% младенческой смертности обусловлено этой патологией. Практически все разделы клинической медицины включают наследственные болезни. Например, около 70% случаев нарушений зрения и 45% тугоухости относятся к этой патологии. Среди нервных болезней выделяют примерно 350 заболеваний, обусловленных генными мутациями, в дерматологии — 250 и т.д. Необходимо отметить, что понятие «врожденные болезни» не является синонимом «наследственные болезни». Врожденная патология выявляется у ребенка при его рождении. Она может быть вызвана не только мутациями, но и одними факторами внешней среды, которые повреждают плод (внутриутробные инфекции, травмы и т.д.). В то же время, на- следственные заболевания не всегда проявляются с момента рождения или далее в детском возрасте. Некоторые из них (например, хорея Гентингтона) могут начинаться в 40-50 лет. Кроме того, «семейные болезни» тоже не всегда являются наследственными, так как члены одной семьи обычно попадают под влияние одинаковых факторов внешней среды и могут иметь однотипные патологические нарушения. Особое значение в генетике человека приобрел термин «синдром», который широко используется в медицине. При описании наследственной патологии его используют для названия заболевания (например, синдром Дауна). Профилактика — это комплекс мероприятий, направленных на предупреждение возникновения и развития наследственных и врожденных болезней. Различают первичную, вторичную и третичную профилактики наследственной патологии. Первичная профилактика наследственных болезней — это комплекс мероприятий, направленных на предупреждение зачатия больного ребенка. Реализуется это планированием деторождения и улучшением среды обитания человека. Планирование деторождения включает три основные позиции. 1. Оптимальный репродуктивный возраст, который для женщин находится в пределах 21—35 лет (более ранние или поздние беременности увеличивают вероятность рождения ребенка с врожденной патологией). 2. Отказ от деторождения в случаях высокого риска наследственной и врожденной патологии (при отсутствии надежных методов дородовой диагностики, лечения, адаптации и реабилитации больных). 3. Отказ от деторождения в браках с кровными родственниками и между двумя гетерозиготными носителями патологического гена. Улучшение среды обитания человека направлено главным образом на предупреждение вновь возникающих мутаций. Осуществляется это жестким контролем содержания мутагенов и тератогенов в среде обитания человека.
Вторичная профилактика осуществляется за счет прерывания беременности в случае высокой вероятности заболевания у плода или установления диагноза пренатально. Прерывание может происходить только с согласия женщины в установленные сроки. Основанием для элиминации эмбриона или плода является наследственная болезнь. Прерывание беременности — решение явно не самое лучшее, но в настоящее время единственно пригодное при большинстве тяжелых и смертельных генетических дефектов. Третичная профилактика наследственных болезней направлена на предотвращение развития заболевания у родившегося ребенка или его тяжелых проявлений. Эту форму профилактики можно назвать нормокопированием, т. е. развитие здорового ребенка с патологическим генотипом. Третичная профилактика некоторых форм наследственной патологии может совпадать с лечебными мероприятиями в общемедицинском смысле. Предотвращение развития наследственного заболевания (нор-мокопирование) включает в себя комплекс лечебных мероприятий, которые можно осуществлять внутриутробно или после рождения. Для некоторых наследственных заболеваний (например, резус-несовместимость, некоторые ацидурии, галактоземия) возможно внутриутробное лечение. Наиболее широко предотвращение развития заболевания используется в настоящее время для коррекции (лечения) после рождения больного. Типичным примером третичной профилактики могут быть фенилкетонурия, гипотиреоз. Можно еще назвать целиакию — заболевание, которое развивается в начале прикорма ребенка манной кашей. У таких детей имеется непереносимость злакового белка глютена. Исключение таких белков из пищи полностью гарантирует ребенка от тяжелейшей патологии желудочно-кишечного тракта.
Генные болезни — это разнообразная по клинической картине группа заболеваний, обусловленная мутациями единичных генов.
Число известных в настоящее время моногенных наследственных заболеваний составляет около 4000 нозологических форм. Встречаются эти заболевания с частотой 1:500 — 1:100000 и реже.
В одном и том же гене возникают разнообразные виды мутаций. Известно, что одна и та же нозологическая форма может быть обусловлена различными мутациями.
В каждом гене может возникать до нескольких десятков и даже сотен мутаций, ведущих к заболеваниям.
Мутации могут возникать в любых генах, приводя к нарушению (изменению) структуры соответствующих полипептидных цепей белковых молекул. Поскольку в организме человека по приблизительным оценкам содержится более 100000 различных видов белков, то становится понятным чрезвычайное разнообразие клинических проявлений моногенных заболеваний. В зависимости от функции измененного белка будут происходить биохимические изменения в организме, приводя к специфической клинической картине наследственного заболевания. Многие генные мутации приводят к образованию таких молекулярных форм белков, патогенное действие которых выявляется только при взаимодействии организма со специфическими факторами внешней среды. Это так называемые экогенетические варианты. Важно подчеркнуть, что при отсутствии контактов с определенными веществами у носителей «экогенетических» мутантных аллелей не возникают патологические реакции или болезни.
Начало патогенеза любой генной болезни связано с первичным эффектом мутантного аллеля. Он может проявляться в следующих вариантах: отсутствие синтеза белка; синтез аномального по первичной структуре белка; количественно избыточный синтез белка; количественно недостаточный синтез белка.
Принципиальные звенья патогенеза генных болезней можно представить следующим образом: мутантный аллель —» патологический первичный продукт -» цепь последующих биохимических реакций -» клетки —> органы -» организм.
Отсутствие синтеза белка как причина развития болезни встречается наиболее часто. Ярким примером является фенилкетонурия, когда в отсутствие фермента фенилаланингидроксилазы печени фенилаланин не может превращаться в тирозин. Повышенная концентрация фенилаланина вместе с другими токсическими веществами его метаболизма накапливается в крови у больного, воздействует на развивающийся мозг, что и приводит к формированию фенилпировиноградной олигофрении.
Для большинства моногенных заболеваний главным звеном патогенеза является клетка. Первичное действие мутантного гена направлено на определенные клеточные структуры, специфичные для различных заболеваний (митохондрии, мембраны, лизосомы, пероксисомы). Патологический процесс, возникающий в результате мутации единичного гена, проявляется одновременно на молекулярном, клеточном и органном уровнях у любого индивида.
Существует несколько подходов к классификации моногенных наследственных болезней: генетический, патогенетический, клинический и др. Наиболее часто пользуются классификацией, основанной на генетическом принципе. Вторая классификация основана на клиническом принципе, т. е. на отнесении болезни к той или иной группе в зависимости от системы органов, наиболее вовлеченной в патологический процесс, — моногенные заболевания нервной, дыхательной, сердечно-сосудистой систем, кожи, органов зрения, психические, эндокринные и так далее. Третья классификация основывается на патогенетическом принципе. Согласно ей все моногенные болезни можно разделить на наследственные болезни обмена веществ (наследственные нарушения аминокислотного обмена, нарушения обмена углеводов, нарушения липидного обмена, стероидного обмена.
Хромосомные болезни — это большая группа врожденных наследственных заболеваний, которые клинически характеризуются наличием множественных пороков развития, а в качестве этиологической основы имеют численные или структурные аномалии хромосом.
Все хромосомные болезни можно разделить на три группы: полные формы с изменением числа хромосом; полные формы с изменением структуры хромосом; мозаичные формы с хромосомными или геномными мутациями.
В основе хромосомных мутаций, т. е. хромосомных заболеваний, обусловленных изменением структуры отдельных хромосом, лежат следующие механизмы: транслокация (обмен сегментами различных хромосом); делеция (утрата части хромосомы); дупликация (удвоение сегмента хромосомы); инверсия (разрыв хромосомы в двух местах и поворот этого участка на 180°).
Хромосомные аномалии имеют широкий спектр клинических проявлений. Они могут быть причиной врожденных пороков развития, повторных самопроизвольных абортов, случаев мертворождения, неонатальной смертности и бесплодия.
Главными эффектами хромосомных аномалий являются летальность и врожденные пороки развития. Частота хромосомных болезней среди новорожденных составляет 5 :1000 — 7:1000; среди мертворожденных и детей, умерших в возрасте до года, — 22 :1000. Окончательный диагноз хромосомной патологии возможен только после проведения цитогенетического анализа (кариотипирования).
Массовые программы обследования людей — скрининг (от английского «screening» — просеивание) впервые были внедрены в медицинскую практику в начале XX в. в США. Определение термина «скрининг» было дано I. Wilson, G. Jugner в 1968 г. в официальном документе ВОЗ, согласно которому это предположительное обнаружение не диагностированной ранее болезни или дефектов с помощью тестов, обследований или других процедур, дающих быстрый ответ.
Основная задача просеивающих программ заключается в раннем выявлении заболеваний на доклинической стадии, когда их терапия может оказаться особенно эффективной.
Существует много различных просеивающих программ, которые имеют разные цели в зависимости от потребности общества и экономических возможностей. Иногда тестируется только одно заболевание, в других случаях используется целая серия сложных лабораторных методов для обнаружения большого числа патологических состояний. В зависимости от поставленных задач обследуются люди разного возраста или отдельных популяций. По заключению ВОЗ, скрининг является только начальным этапом в целом комплексе дальнейших диагностических и лечебных мероприятий, необходимых для коррекции состояния здоровья людей, страдающих тестируемым заболеванием.
80.Использование биохимических методов для выявления гетерозиготных носителей и диагностики наследственных заболеваний. Генетическая опасность радиации и химических веществ. Перспективы лечения наследственных болезней. Задачи медико-генетических консультаций.
Медико-генетическое консультирование — это специализированный вид медицинской помощи, направленный на лрофилактику наследственной патологии. Его целью является определение вероятности рождения ребенка с наследственным заболеванием и объяснение этой ситуации консультирующимся, помощь семье в принятии решения. Термин «медико-генетическая консультация» означает как обследование у врача-генетика, так и специализированное медицинское учреждение.
Консультация у врача-генетика обязательно начинается с уточнения диагноза пробанда. При этом используются специализированные методы: клинико-генеалогический, цитогенетический, биохимический, молекулярно-генетический. В случае необходимости для обследования больного привлекаются врачи других специальностей. Достаточно часто применяются разнообразные методы общего клинико-лабораторного исследования: гормональные, радиологические, иммунологические и т.д.
Для уточнения диагноза бывает необходимо обследовать родственников. Это помогает определить тип наследования, уточнить диагноз заболевания у пробанда. Кроме того, анализ клинических проявлений у разных членов семьи дает возможность предполагать характер течения патологического процесса у конкретного человека.
На основании полученной информации врач-генетик определяет вероятность рождения больного ребенка или риск возникновения заболевания у здорового родственника. Расчет риска проводится либо путем теоретических вычислений, либо с использованием эмпирических данных, полученных при научном анализе аналогичных ситуаций.
Медико-генетическое консультирование заканчивается разъяснением обратившимся пациентам генетического риска возникновения заболевания, характера его течения. При этом даются советы по профилактике рождения больного ребенка, современным методам доклинической диагностики и терапии. Этот последний этап работы врача-генетика является очень важным, так как он определяет эффективность консультации. Если пациенты неправильно поймут заключение или не будут ему доверять, то в семье может повториться тяжелая трагедия. Часто родители или другие родственники больного испытывают чувство «вины» за произошедшее в семье несчастье. В таком случае необходимо объяснить пациентам случайность и независимость действия генетических факторов от воли человека.
Беседа врача-генетика должна способствовать предупреждению рождения больного ребенка в семье. Если риск тяжелого заболевания оказывается очень высоким и нет способов для его дородовой диагностики, то рекомендуют отказаться от деторождения. Но в любом случае окончательное решение о дальнейшем рождении ребенка принимается только семьей.
При лечении наследственных заболеваний и болезней с наследственной предрасположенностью используются те же подходы, что и при заболеваниях любой другой этиологии (симптоматические, патогенетические и этиологические).
Симптоматическое лечение. В настоящее время симптоматическое лечение для большинства наследственных форм является единственно возможным. Классическим примером такого вида лечения является терапия муковисцидоза. Необходимо подчеркнуть, что симптоматическая терапия будет использоваться и в дальнейшем, наряду с самыми современными методами патогенетического и этиологического лечения.
Патогенетическое лечение. Благодаря знаниям молекулярной и биохимической генетики появляются новые возможности изучения патогенеза каждого заболевания, а соответственно и разработки новых методов патогенетической терапии. В целом патогенетические подходы к лечению наследственной патологии можно представить следующим образом — если ген не работает, то необходимо возместить его продукт; если ген производит не то, что нужно, и образуются токсические продукты, то необходимо удаление таких продуктов и возмещение основной функции; если ген производит много продукта, то избыток последнего удаляют.
Этиологическое лечение. Этот вид лечения наиболее перспективен, так как полностью устраняет причину заболевания, а соответственно и полностью излечивает его.
В настоящее время лечение наследственных болезней представляет собой очень сложную задачу. К сожалению, далеко не всегда удается добиться хорошего эффекта. Но следует отметить, что за последнее десятилетие определенный прогресс в лечении наследственной патологии достигнут. Это находит свое отражение в увеличении продолжительности жизни больных, в улучшении репродуктивной способности, в нормализации соматического развития при некоторых заболеваниях.
Хирургическое лечение. Этот вид лечения занимает существенное место в помощи больным с наследственной патологией. Зачастую необходимость в хирургической коррекции возникает непосредственно сразу после рождения ребенка (стенозы и атрезии пищевода, атрезии ануса и др.). Трансплантация органов и тканей как метод лечения наследственных болезней в настоящее время находит широкое применение в медицинской практике.