Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы, генетика.doc
Скачиваний:
95
Добавлен:
24.09.2019
Размер:
1.5 Mб
Скачать

28.Особенности процессов, ведущих к рекомбинации у прокариот. Конъюгация у

бактерий: половой фактор кишечной палочки. Методы генетического картирования при

конъюгации. Кольцевая карта хромосом прокариот.

Мутационный процесс и поток генов могут создать в популяции изменчивость по единичным генам. Если в результате таких первичных процессов возникает аллельная изменчивость по двум или большему числу генов, то создаётся почва для действия вторичного процесса — рекомбинации, В результате рекомбинации новые аллели, носителями которых первоначально, вероятно, были разные особи, могут сочетаться в одном генотипе. За счет рекомбинации число различающихся генотипов в популяции может увеличиться; этот процесс превращает небольшой первоначальный запас изменчивости по множественным генам в гораздо более значительное количество генотипической изменчивости.

Процесс рекомбинации

Допустим, что в популяции диплоидных организмов, размножающихся половым путем, в двух независимо распределяющихся генах А и В возникли новые мутации. Допустим далее, что носителями мутантных аллелей (а и b) первоначально были разные особи с генотипами АаВВ и ААВb соответственно. Теперь может начаться процесс рекомбинации, слагающийся из следующих этапов: 1) скрещивание между носителями различных мутантных аллелей: АаВВ×ААВb; 2) появление в F1 гетерозигот по двум генам АаВb (помимо других типов); 3) независимое распределение гамет с образованием четырёх классов гамет — АВ, Аb, аВ и ab; 4) образование в F2 девяти различных генотипов — ААВВ, …, aabb.

Большую часть этих девяти генотипов составляют новые генотипы. В начале процесса в популяции было три генотипа (ААВВ, АаВВ и ААВb); спустя два поколения она содержала девять генотипов, в том числе такие новые рекомбинантные типы, как ааВb и aabb,

Для того чтобы произошла рекомбинация, гены А и В необязательно должны быть независимы. Гены A и B могут рекомбинироваться, находясь в разных хромосомах или же в разных локусах одной хромосомы. Сцепление, если только оно не слишком тесное, снижает частоту рекомбинаций, но не предотвращает их образования.

Следует сказать несколько слов о терминологии. В рекомбинации генов участвуют два процесса: независимое распределение негомологичных хромосом и кроссинговер между негомологичными хромосомами. Молекулярные биологи и микробиологи, используя термин рекомбинация, имеют в виду исключительно второй процесс. Биологи, имеющие дело с организмами и популяциями, используют этот термин в его классическом смысле, т. е. имея в виду как сцепленные, так и несцепленные гены; именно в этом смысле мы пользуемся им в этой книге.

Конъюгация

Конъюгацией у прокариот называется прямой контакт двух разнокачественных клеток, сопровождаемый хотя бы частичным переносом генетического материала от клетки-донора к клетке-реципиенту.

Процесс конъюгации был открыт в 1946 г. Дж. Ледербергом и Э. Татумом.

У кишечной палочки клетка-донор («мужская») имеет продолговатую форму, клетка-реципиент («женская») – изодиаметрическую. Клетка-донор образует половые ворсинки (пили), которые притягивают ее к клетке-реципиенту и образуют цитоплазматические каналы. По этим каналам ДНК из клетки-донора переходит в клетку-реципиент. Существует три типа клеток-доноров: F+ (эф–плюс), Hfr (эйч–эф–а) и F′ (эф–прим).

F+ -доноры содержат в цитоплазме половой фактор – специфическую F–плазмиду.

F–плазмида – это автономный репликон длиной около 100 тпн. В составе F–плазмиды изучено более 20 генов. Примерно половина из них образует гигантский оперон tra (длиной около 30 тпн); продукты этого оперона контролируют образование контакта между донором и реципиентом и собственно перенос ДНК. Остальные гены регулируют работу tra–оперона.

Клетка-реципиент не содержит F–плазмиды и обозначается как F– –клетка.

При образовании цитоплазматического мостика одна из цепей F–плазмиды надрезается в определенной точке (точка О), а на комплементарной цепи начинается репликация ДНК по принципу «катящегося кольца». Копия комплементарной цепи по цитоплазматическому мостику переходит в цитоплазму клетки–реципиента, и на ней достраивается недостающая цепь. После окончания репликации двунитевая плазмидная ДНК замыкается в кольцо, и F– –клетка превращается в F+ –клетку. Полное время переноса копии F–плазмиды в клетку–реципиент составляет примерно 5 минут.

Однако при скрещивании F+ × F– в клетку–реципиент попадают только гены, содержащиеся в F–плазмиде; гены домашнего хозяйства, локализованные в бактериальной хромосоме, в клетку–реципиент не переносятся.

В то же время F–плазмида может встраиваться в бактериальную хромосому, то есть переходить в интегрированное состояние. В бактериальной хромосоме имеется около 20 сайтов интеграции F–плазмиды. Тогда при переносе копии одной из цепей F–плазмиды в клетку–реципиент за ней увлекается и копия одной из цепей бактериальной хромосомы. Клетки с интегрированной F–плазмидой называются Hfr–доноры (от англ. «высокая частота рекомбинаций»). В зависимости от условий возможен полный или частичный перенос копии бактериальной хромосомы Hfr–донора в цитоплазму реципиента. В результате образуется клетка с одной исходной двунитевой бактериальной хромосомой и одной полной или неполной гомологичной однонитевой молекулой ДНК. Такая клетка называется мерозигота («частичная зигота»). Далее при репликации ДНК протекает рекомбинация. Этот процесс принципиально не отличается от рекомбинации при трансформации.

Перенос копии ДНК начинается примерно с середины F–плазмидной ДНК (с точки О, в которой одна из цепей ДНК надрезается, и начинается репликация F–плазмидной ДНК). Таким образом, половина F–плазмидной ДНК проникает в клетку–реципиент в начале конъюгации, а вторая половина – только после полного переноса копии хромосомной ДНК. Для полного завершения этого процесса при t = 37 0С требуется более 100 минут. Однако в природных условиях конъюгация прерывается значительно раньше, в клетку–реципиент переходит только часть копии хромосомы донора и только первая половина F–плазмидной ДНК. Таким образом, клетка-реципиент не принимает свойства Hfr–донора.

Однако существуют штаммы бактерий, у которых копия бактериальной хромосомы вместе с копией F–плазмидной ДНК переносится полностью. Такие клетки называются vHfr–доноры (от англ. «очень высокая частота рекомбинаций»).

Вероятность переноса определенного гена в клетку–реципиент зависит от его удаления от F–плазмидной ДНК, а точнее, от точки О, в которой начинается репликация F–плазмидной ДНК. Чем больше время конъюгации, тем выше вероятность переноса данного гена. Это дает возможность составить генетическую карту бактерий в минутах конъюгации. Например, у кишечной палочки ген thr (оперон из трех генов, контролирующих биосинтез треонина) находится в нулевой точке (то есть непосредственно рядом с F–плазмидной ДНК), ген lac переносится через 8 мин, ген recE – через 30 мин, ген argR – через 70 мин и т.д.

 

F–плазмида может переходить из интегрированного состояния в автономное путем самовырезания из бактериальной хромосомы. В этом случае возможен захват и части хромосомной ДНК (до 50 % хромосомных генов). F–плазмида, включающая хромосомные гены, называется F′ –фактором. Перенос генетического материала при скрещиваниях F′ × F– называется сексдукция.

 

Кроме F–плазмиды у прокариот известны и другие типы половых факторов (R, Ent, Hly, Col), обеспечивающих перенос генетического материала от бактерии к бактерии. На основе природных плазмид (в том числе ДНК хлоропластов и митохондрий) получены полусинтетические молекулы ДНК, обеспечивающие перенос генетического материала из одной клетки в другую, называются векторы. Векторы должны обеспечивать не только устойчивый перенос генов, но и регуляцию их транскрипции.

Прокариотические плазмиды могут реплицироваться только в прокариотических клетках. В то же время, существует необходимость переноса генов от эукариот к прокариотам и наоборот. Для этого используются челночные плазмиды, которые содержат два репликатора (прокариотический и эукариотический) и способны реплицироваться и в прокариотических, и в эукариотических клетках, например, Ti– и Ri–плазмиды, способные к репликации в прокариотических и растительных клетках, и полусинтетические векторы, созданные на их основе. Для защиты векторов от разрушения нуклеазами их заключают в фосфолипидные пузырьки – липосомы.

При картировании генов у бактерий с помощью конъюгации получается кольцевая генетическая карта хромосомы. Значение генетиче ских карт позволяет планировать работу по получению организмов с определенными сочетаниями признаков, что используется в генетических экспериментах селекционной практике. Сравнение генетических карт хромосом разных видов способствует эволюциоонному процессу. На основе же генетических карт проводят генетический анализ. Методы картирования хромосомы при конъюгации: по градиенту передачи маркеров, по времени их вхождения в мерозиготу, по частоте кроссинговера.

Кольцевая хромосома (ring chromosome) - Естественная структура хромосом у многих прокариот, некоторых вирусов, а также молекул ДНК, входящих в состав пластид и митохондрий эукариот – замкнутая двухцепочечная молекула ДНК. У некоторых вирусов кольцевая хромосома состоит из одноцепочечной молекулы ДНК. Также кольцевая хромосома – структурная хромосомная аберрация, появляющаяся в результате мутаций, ведущих к образованию «липких концов» по крайней мере с частичной комплементарностью; мелкие кольцевые хромосомы образуются при фрагментациях и (крайний случай) пульверизации хромосом.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]