- •1. Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.
- •Доказательства роли ядра и хромосом в явлениях наследственности. Локализация генов в хромосомах.
- •4. Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.
- •5. Кариотип. Специфичность морфологии и числа хромосом.
- •6. Молекулярные основы наследственности. Концепция «один ген - один полипептид». Белок как элементарный признак.
- •7. Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура днк и рнк. Модель днк Уотсона и Крика.
- •8. Функции нуклеиновых кислот в реализации генетической информации: репликация, транскрипция и трансляция. Методологическое значение принципа передачи генетической информации: днк —* рнк —* белок.
- •9. Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов.
- •10.Строение хромосом: хроматида, хромомеры, эухроматические и гетерохроматические
- •11.Изменения в организации морфологии хромосом в ходе митоза и мейоза. Репликация
- •12.Молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина:
- •13.Цели и принципы генетического анализа. Методы: гибридологический, мутационный,
- •14.Закономерности наследования при моногибридпом скрещивании, открытые г.
- •15.Представление об аллелях и их взаимодействиях: полное и неполное доминирование,
- •17.Закономерности наследования в ди- и полигибридных скрещиваниях, при моногенном
- •18.Неаллельные взаимодействия. Биохимические основы неаллельных взаимодействий.
- •19.Особенности наследования количественных признаков (полигенное наследование).
- •20.Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения
- •21.Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при не расхождении половых хромосом.
- •22.Значение работ школы т. Моргана в изучении сцепленного наследования признаков.
- •23.Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на
- •24. Множественные перекресты. Интерференция. Линейное расположение генов в
- •25.Генетические карты, принцип их построения у эукариот. Цитологические карты
- •26.Особенности микроорганизмов как объекта генетических исследований. Организация
- •28.Особенности процессов, ведущих к рекомбинации у прокариот. Конъюгация у
- •29.Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и
- •30.Закономерности нехромосомного наследования, отличие от хромосомного
- •31.Материнский эффект цитоплазмы. Пластидная наследственность. Митохондриальная
- •32.Наследование дыхательной недостаточности у дрожжей и нейроспоры.
- •33.Инфекционные факторы внеядерной наследственности. Плазмидное наследование.
- •34.Понятие о наследственной и ненаследственной (модификационной) изменчивости.
- •35.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и
- •36.Геномные изменения: полиплоидия. Автополиплоиды, особенности мейоза и характер
- •37.Геномные изменения: анеуплоидия. Анеуплоидия: нуллисомики, моносомики,
- •38.Хромосомные перестройки. Внутри- и межхромосомные перестройки. Особенности
- •39.Классификация генных мутаций. Общая характеристика молекулярной природы
- •40.Спонтанный и индуцированный мутационный процесс. Многоэтапность и
- •41.Химический мутагенез. Особенности мутагенного действия химических агентов.
- •42.Представление школы Моргана о строении и функции гена. Функциональный и
- •43.Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональней тест на аллелизм (цис-транс тест).
- •44.Исследование тонкой структуры гена на примере фага т4 (Бензер). Ген как единица функции (цистрон).
- •45.Интрон-экзонная организация генов эукариот, сплайсинг. Структурная организация генома эукариот. Классификация повторяющихся элементов генома.
- •46.Семейства генов. Псевдогены. Регуляторные элементы генома.
- •47.Генетический контроль и молекулярные механизмы репликации. Полигенный контроль процесса репликации. Схема событий в вилке репликации. Понятие о репликоне.
- •48.Системы рестрикции и модификации. Рестрикционные эндонуклеазы.
- •49.Проблемы стабильности генетического материала. Типы структурных повреждений в днк и репарационные процессы.
- •51.Рекомбинация: гомологический кроссинговер, сайтспецифическая рекомбинация, транспозиции. Доказательство механизма общей рекомбинации по схеме «разрыв-воссоединение».
- •5 2. Молекулярная модель рекомбинации по Холлидею. Генная конверсия. Сайт-специфическая рекомбинация: схема интеграции и исключения днк фага лямбда.
- •53.Механизмы спонтанного мутагенеза, гены мутаторы и антимутаторы. Понятие о мутагенных индуцибельных путях репарации; уф-мутагенез.
- •54.Принципы негативного и позитивного контроля. Оперонные системы регуляции (теория Жакоба и Моно). Генетический анализ лактозного оперона.
- •55.Регуляция транскрипции на уровне терминации на примере триптофанового оперона. Системная регуляция; роль циклической амф и гуанозинтрифосфата.
- •56.Принципы регуляции действия генов у эукариот. Регуляторная роль, гистонов, негистоновых белков, гормонов. Особенности организации промоторной области у эукариот.
- •57.Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов. Роль гомейозисных генов в онтогенезе.
- •58.Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •59.Тканеспецифическая активность генов. Функциональные изменения хромосом в онтогенезе (пуффы, «ламповые щетки»); роль гормонов, эмбриональных индукторов.
- •60. Применение метода соматической гибридизации для изучения процессов дифференцировки и для генетического картирования. Химерные (аллофенные) животные.
- •61. Совместимость и несовместимость тканей. Генетика иммунитета. Онкогены, онкобелки.
- •62. Задачи и методология генетической инженерии. Методы выделения и синтеза генов.
- •63.Понятие о векторах. Векторы на основе плазмид и днк фагов. Геномные библиотеки. Способы получения рекомбинантных молекул днк, методы клонирования генов.
- •65.Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •66. Понятие о виде и популяции. Понятие о частотах генов и генотипов. Математические модели в популяционной генетике. Закон Харди - Вайнберга, возможности его применения.
- •67. Методы изучения природных популяций. Факторы динамики генетического состава популяции (дрейф генов), мутационный процесс, межпопуляционные миграции, действие отбора.
- •68.Взаимодействие факторов динамики генетической структуры в природных популяциях. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •70.Молекулярно-генетические основы эволюции. Задачи геносистематики. Значение генетики популяций для медицинской генетики, селекции решения проблем сохранения генофонда и биологического разнообразия.
- •71.Предмет и методология селекции. Учение об исходном материале. Центры происхождения культурных растений по н.И. Вавилову. Понятие о породе, сорте, штамм.
- •73.Использование индуцированных мутаций и комбинативной изменчивости в селекции растений, животных и микроорганизмов. Роль полиплоидии в повышении продуктивности растений.
- •75.Явление гетерозиса и его генетические механизмы. Использование простых и двойных межлинейных гибридов и растениеводстве и животноводстве.
- •77.Особенности человека как объекта генетических исследований. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный.
70.Молекулярно-генетические основы эволюции. Задачи геносистематики. Значение генетики популяций для медицинской генетики, селекции решения проблем сохранения генофонда и биологического разнообразия.
Четвериков и его ученики Н.К. Беляев, С.М. Гершензон .П.Ф. Рокицкий и
Д.Д. Ромашов впервые осуществили экспериментально-генетический анализ
природных популяций дрозофилы, полностью подтвердивший их насыщенность
рецессивными мутациями. Было также установлено, что сохранение и
распространение мутаций в популяции определяется генетико-автоматическими
процессами. Детальный анализ этих процессов был проведен Ромашовым (1931),
Дубининым (1931) и Райтом (1921, 1931). Последний назвал их "явление дрейфа
генов в популяции", а Четвериков - "генетико-стохастическими ", подчеркнув
их вероятностно-статистическую природу. Статистический анализ, показал, что
в результате генетико-автоматических процессов уничтожаются множество
возникших мутации и лишь некоторые доводятся до уровня заметных
концентраций. В силу вероятностной природы генетико-автоматичеких процессов
они могут то устранять отдельные мутации, то поднимать их численность,
позволяя отбору осуществлять механизм "проб и ошибок". Генетико-
автоматические процессы постоянно выносят редкие мутации до уровня действия
отбора и этим помогают последнему быстро "пересмотреть " новые варианты
мутантов. Таким образом генетико-автоматичекие процессы ускоряют эволюцию
новых мутаций за счет сокращения ранних этапов размножения вновь возникших
мутации
Детальное изучение генетических структур природных популяций и
скорости распространения мутаций в природе превратилось сейчас в область
биологии, активно разрабатываемую на основе математических методов.
Основными факторами такой эволюции являются:
1) мутации;
2) отбор (естественный и искусственный);
3) генетико-автоматические процессы, или, по-другому, дрейф генов - процессы чисто случайных изменений концентраций аллелей или зависимых от других генетических процессов - сопряженный дрейф аллелей;
4) миграции - естественные процессы смешения популяций или искусственное скрещивание друг с другом разных пород, сортов и видов.
ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И ЭКОЛОГИЯ
Обитающие в каждом регионе виды животных, растений и микроорганизмов образуют целостную систему, известную как экосистема. Каждый вид представлен в ней своей, уникальной популяцией. Оценить экологическое благополучие данной территории или акватории позволяют данные, характеризующие генофонд ее экосистемы, т.е. генофонд слагающих ее популяций. Именно он обеспечивает существование экосистемы в данных условиях. Поэтому за изменениями в экологической обстановке региона можно проследить, изучая генофонды популяций обитающих там видов.
Осваивая новые территории, прокладывая нефте- и газопроводы, следует заботиться о сохранении и восстановлении природных популяций. Популяционная генетика уже предложила свои меры, например выделение природных генетических резерватов. Они должны быть достаточно обширными, чтобы содержать основной генофонд растений и животных данного региона. Теоретический аппарат популяционный генетики позволяет определить ту минимальную численность, которая необходима для поддержания генетического состава популяции, чтобы в ней не было т.н. инбридинговой депрессии, чтобы она содержала основные генотипы, присущие данной популяции, и могла воспроизводить эти генотипы. При этом каждый регион должен иметь свои собственные природные генетические резерваты. Нельзя восстанавливать загубленные сосняки Севера Западной Сибири, завозя семена сосны из Алтая, Европы или Дальнего Востока: через десятки лет может оказаться, что «чужаки» генетически плохо приспособлены к местным условиям. Вот почему экологически грамотное промышленное освоение территории должно обязательно включать популяционные исследования региональных экосистем, позволяющие выявить их генетическое своеобразие.
Сказанное относится не только к растениям, но и к животным. Генофонд той или иной популяции рыб эволюционно приспособлен именно к тем условиям, в которых он обитал в течение многих поколений. Поэтому интродукция рыб из одного природного водоема в другой порой приводит к непредсказуемым последствиям. Например, попытки развести сахалинскую горбушу в Каспии оказались безуспешными, ее генофонд оказался не в состоянии «освоить» новое местообитание. Та же горбуша, интродуцированная в Белое море, покинула его и ушла в Норвегию, образовав там временные стада «русского лосося».
Не надо думать, что основными объектами заботы о природе должны быть только экономически ценные виды растений и животных, такие, как древесные породы, пушные звери или промысловые рыбы. Травянистые растения и мхи, мелкие млекопитающие и насекомые – их популяции и их генофонды наравне со всеми другими обеспечивают нормальную жизнь территории. То же относится к микроорганизмам – тысячи их видов населяют почву. Изучение почвенных микробов – задача не только микробиологов, но и популяционных генетиков.
Изменение генофонда популяций при грубых вмешательствах в природу выявляется не сразу. Могут пройти десятилетия, прежде чем станут очевидными последствия в виде исчезновения одних популяций, а за ними – других, связанных с первыми.
ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И МЕДИЦИНА
Один из насущнейших вопросов человечества – как лечить наследственные болезни. Однако до недавнего времени сама постановка такого вопроса казалась фантастической. Речь могла идти только о профилактике наследственных заболеваний в форме медико-генетического консультирования. Опытный врач-генетик, изучая историю болезни пациента и исследуя, сколь часто наследственное заболевание проявлялось среди его близких и дальних родственников, давал заключение о том, может ли у пациента появиться ребенок с такой патологией; и если может, то какова вероятность данного события (например, 1/2, 1/10, или 1/100). Основываясь на этой информации, супруги сами решали, иметь им ребенка или не иметь.
Бурное развитие молекулярной биологии существенно приблизило нас к заветной цели – лечению наследственных болезней. Для этого прежде всего необходимо найти среди множества генов человека тот, который ответствен за болезнь. Популяционная генетика помогает решить эту сложную задачу.
Известны генетические метки – т.н. ДНК-маркеры, которые позволяют отметить в длинной нити ДНК, скажем, каждую тысячную или десятитысячную «бусинку». Исследуя больного, его родственников и здоровых лиц из популяции, можно установить, какой из маркеров сцеплен с геном болезни. С помощью специальных математических методов популяционные генетики выявляют тот участок ДНК, в котором расположен интересующий нас ген. После этого в работу включаются молекулярные биологи, которые детально анализируют этот отрезок ДНК и находят в нем дефектный ген. Таким способом картированы гены большинства наследственных болезней. Теперь врачи получили возможность в первые месяцы беременности прямо судить о здоровье будущего ребенка, а родители – решать вопрос, сохранять или не сохранять беременность, если заранее известно, что ребенок родится больным. Более того, уже предпринимаются попытки исправлять допущенные природой ошибки, устранять «поломки» в генах.
С помощью ДНК-маркеров можно не только искать гены болезней. Используя их, проводят своеобразную паспортизацию индивидов. Такая ДНК-идентификация – распространенный вид судебно-медицинской экспертизы, позволяющий определить отцовство, опознать перепутанных в роддоме детей, выявить личность участников преступления, жертв катастроф и военных действий.
ПОПУЛЯЦИОННАЯ ГЕНЕТИКА И СЕЛЕКЦИЯ
Согласно теории Дарвина, отбор в природе направлен только на непосредственную пользу – выжить и размножиться. Например, у рыси окраска шерсти палево-дымчатая, а у льва – песчано-желтая. Окраска, как маскировочная одежда, служит тому, чтобы особь сливалась с местностью. Это позволяет хищникам незаметно подкрадываться к жертве или выжидать. Поэтому хотя цветовые вариации постоянно появляются в природе, дикие кошки с такой «меткой» не выживают. Лишь человек с его вкусовыми пристрастиями создает все условия для жизни домашних кошек самых разнообразных окрасок.
Переходя к оседлому образу жизни, люди уходили от охоты на животных и собирательства растений к их воспроизводству, резко уменьшая свою зависимость от катаклизмов природы. Тысячелетиями размножая особей с нужными признаками и ведя тем самым отбор соответствующих генов из генофондов популяций, люди постепенно создали все те сорта домашних растений и породы животных, что нас окружают. Это был тот же отбор, что проводила миллионами лет природа, но только теперь в роли природы выступил человек, направляемый разумом.
С началом развития популяционный генетики, т.е. с середины 20 в., селекция пошла по научному пути, а именно по пути прогнозирования ответа на отбор и выбора оптимальных вариантов селекционной работы. Например, в скотоводстве племенная ценность каждого животного вычисляется сразу по многим признакам продуктивности, определяемым не только у данного животного, но и у его родственников (матерей, сестер, потомков и др.). Все это сводится в некий общий индекс, учитывающий как генетическую обусловленность признаков продуктивности, так и их экономическую значимость. Это особенно важно при оценке производителей, у которых собственную продуктивность определить невозможно (например, у быков в молочном скотоводстве или у петухов яичных пород). С внедрением искусственного осеменения появилась необходимость в разносторонней популяционной оценке племенной ценности производителей при их использовании в разных стадах с разным уровнем кормления, содержания и продуктивности. В селекции растений популяционный подход помогает количественно оценить генетическую способность линий и сортов давать перспективные гибриды и прогнозировать их приспособленность и продуктивность в разных по климату и почвам регионах.
Таким образом, из чисто академической отрасли знаний, какой она была до недавнего времени, популяционная генетика превращается в науку, решающую многие теоретические и прикладные задачи.
