
- •1. Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.
- •Доказательства роли ядра и хромосом в явлениях наследственности. Локализация генов в хромосомах.
- •4. Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.
- •5. Кариотип. Специфичность морфологии и числа хромосом.
- •6. Молекулярные основы наследственности. Концепция «один ген - один полипептид». Белок как элементарный признак.
- •7. Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура днк и рнк. Модель днк Уотсона и Крика.
- •8. Функции нуклеиновых кислот в реализации генетической информации: репликация, транскрипция и трансляция. Методологическое значение принципа передачи генетической информации: днк —* рнк —* белок.
- •9. Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов.
- •10.Строение хромосом: хроматида, хромомеры, эухроматические и гетерохроматические
- •11.Изменения в организации морфологии хромосом в ходе митоза и мейоза. Репликация
- •12.Молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина:
- •13.Цели и принципы генетического анализа. Методы: гибридологический, мутационный,
- •14.Закономерности наследования при моногибридпом скрещивании, открытые г.
- •15.Представление об аллелях и их взаимодействиях: полное и неполное доминирование,
- •17.Закономерности наследования в ди- и полигибридных скрещиваниях, при моногенном
- •18.Неаллельные взаимодействия. Биохимические основы неаллельных взаимодействий.
- •19.Особенности наследования количественных признаков (полигенное наследование).
- •20.Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения
- •21.Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при не расхождении половых хромосом.
- •22.Значение работ школы т. Моргана в изучении сцепленного наследования признаков.
- •23.Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на
- •24. Множественные перекресты. Интерференция. Линейное расположение генов в
- •25.Генетические карты, принцип их построения у эукариот. Цитологические карты
- •26.Особенности микроорганизмов как объекта генетических исследований. Организация
- •28.Особенности процессов, ведущих к рекомбинации у прокариот. Конъюгация у
- •29.Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и
- •30.Закономерности нехромосомного наследования, отличие от хромосомного
- •31.Материнский эффект цитоплазмы. Пластидная наследственность. Митохондриальная
- •32.Наследование дыхательной недостаточности у дрожжей и нейроспоры.
- •33.Инфекционные факторы внеядерной наследственности. Плазмидное наследование.
- •34.Понятие о наследственной и ненаследственной (модификационной) изменчивости.
- •35.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и
- •36.Геномные изменения: полиплоидия. Автополиплоиды, особенности мейоза и характер
- •37.Геномные изменения: анеуплоидия. Анеуплоидия: нуллисомики, моносомики,
- •38.Хромосомные перестройки. Внутри- и межхромосомные перестройки. Особенности
- •39.Классификация генных мутаций. Общая характеристика молекулярной природы
- •40.Спонтанный и индуцированный мутационный процесс. Многоэтапность и
- •41.Химический мутагенез. Особенности мутагенного действия химических агентов.
- •42.Представление школы Моргана о строении и функции гена. Функциональный и
- •43.Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональней тест на аллелизм (цис-транс тест).
- •44.Исследование тонкой структуры гена на примере фага т4 (Бензер). Ген как единица функции (цистрон).
- •45.Интрон-экзонная организация генов эукариот, сплайсинг. Структурная организация генома эукариот. Классификация повторяющихся элементов генома.
- •46.Семейства генов. Псевдогены. Регуляторные элементы генома.
- •47.Генетический контроль и молекулярные механизмы репликации. Полигенный контроль процесса репликации. Схема событий в вилке репликации. Понятие о репликоне.
- •48.Системы рестрикции и модификации. Рестрикционные эндонуклеазы.
- •49.Проблемы стабильности генетического материала. Типы структурных повреждений в днк и репарационные процессы.
- •51.Рекомбинация: гомологический кроссинговер, сайтспецифическая рекомбинация, транспозиции. Доказательство механизма общей рекомбинации по схеме «разрыв-воссоединение».
- •5 2. Молекулярная модель рекомбинации по Холлидею. Генная конверсия. Сайт-специфическая рекомбинация: схема интеграции и исключения днк фага лямбда.
- •53.Механизмы спонтанного мутагенеза, гены мутаторы и антимутаторы. Понятие о мутагенных индуцибельных путях репарации; уф-мутагенез.
- •54.Принципы негативного и позитивного контроля. Оперонные системы регуляции (теория Жакоба и Моно). Генетический анализ лактозного оперона.
- •55.Регуляция транскрипции на уровне терминации на примере триптофанового оперона. Системная регуляция; роль циклической амф и гуанозинтрифосфата.
- •56.Принципы регуляции действия генов у эукариот. Регуляторная роль, гистонов, негистоновых белков, гормонов. Особенности организации промоторной области у эукариот.
- •57.Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов. Роль гомейозисных генов в онтогенезе.
- •58.Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •59.Тканеспецифическая активность генов. Функциональные изменения хромосом в онтогенезе (пуффы, «ламповые щетки»); роль гормонов, эмбриональных индукторов.
- •60. Применение метода соматической гибридизации для изучения процессов дифференцировки и для генетического картирования. Химерные (аллофенные) животные.
- •61. Совместимость и несовместимость тканей. Генетика иммунитета. Онкогены, онкобелки.
- •62. Задачи и методология генетической инженерии. Методы выделения и синтеза генов.
- •63.Понятие о векторах. Векторы на основе плазмид и днк фагов. Геномные библиотеки. Способы получения рекомбинантных молекул днк, методы клонирования генов.
- •65.Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •66. Понятие о виде и популяции. Понятие о частотах генов и генотипов. Математические модели в популяционной генетике. Закон Харди - Вайнберга, возможности его применения.
- •67. Методы изучения природных популяций. Факторы динамики генетического состава популяции (дрейф генов), мутационный процесс, межпопуляционные миграции, действие отбора.
- •68.Взаимодействие факторов динамики генетической структуры в природных популяциях. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •70.Молекулярно-генетические основы эволюции. Задачи геносистематики. Значение генетики популяций для медицинской генетики, селекции решения проблем сохранения генофонда и биологического разнообразия.
- •71.Предмет и методология селекции. Учение об исходном материале. Центры происхождения культурных растений по н.И. Вавилову. Понятие о породе, сорте, штамм.
- •73.Использование индуцированных мутаций и комбинативной изменчивости в селекции растений, животных и микроорганизмов. Роль полиплоидии в повышении продуктивности растений.
- •75.Явление гетерозиса и его генетические механизмы. Использование простых и двойных межлинейных гибридов и растениеводстве и животноводстве.
- •77.Особенности человека как объекта генетических исследований. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный.
65.Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
Первая успешная попытка применить генотерапию в клинической практике была предпринята в 1990 г. в США. Ребенку, страдающему тяжелым комбинированным иммунодефицитом, связанным с дефектом гена, кодирующего аденозиндезаминазу, была введена неповрежденная копия гена. Извлеченные у больного клетки (Т-лимфоциты крови) культивировали в пробирке, при помощи ретровирусного вектора вводили неповрежденный ген аденозиндезами- назы и возвращали клетки больному.
Другая группа болезней, для которой существуют хорошие перспективы излечения генно-инженерными методами, — лизосомные болезни накопления.
На сегодняшний день поддаются излечению с помощью трансгенеза уже около 10 болезней человека.
К числу важных практических достижений генной инженерии следует также отнести создание диагностических препаратов. На сегодняшний день в медицинскую практику введено более 200 новых диагностикумов.
Использование методов генетической инженерии для изучения проблем генетики и биологических наук.
Развитие ряда новых методических приемов привело к расширению возможностей генетической инженерии на клеточном уровне. Определяющую роль сыграл метод гибридизации соматических клеток.
В 1960 г. Ж. Барский показал, что соматические клетки животных способны сливаться и объединять генетическую информацию двух родительских клеток. В 1965 г. Г. Харрис обнаружил, что частота гибридизации соматических клеток резко повышается при введении в смесь клеток частиц РНК-содержащего вируса парагриппа типа Сендай, инактивированного ультрафиолетовым светом. Под влиянием частиц вируса происходит слипание клеток и их последующее слияние друг с другом. Оказалось, что в таких условиях возможна гибридизация клеток, происходящих от далеких форм, таких, как клетки крысы и мыши, мыши и человека, раковой клетки и нормальной клетки человека и т. д.
Эксперименты по слиянию клеток коснулись и мира растений. Оказалось возможным получать протопласты клеток растений, обрабатывая в гипертонической среде клетки мезофилла ферментами пектиназой и целлюлазой, действующими на соединительные части листа и клеточные оболочки. В гипертонической среде протопласты клеток растений выглядят как зеленые сферические образования, отделенные от окружающей среды только цитоплазматической мембраной. Эта модель сразу же привлекла к себе пристальное внимание как уникальный материал для изучения генетики растений. Несмотря на то, что культура тканей была разработана задолго до открытия способа культивирования изолированных протопластов, преимущества последней модели очевидны. Протопласты могут быть с высокой эффективностью клонированы на чашках Петри, что открывает подходы в селекции растений с использованием методов генетики микроорганизмов. Для некоторых видов растений (табак„ морковь, томат и др.) из отдельного протопласта после регенерации клеточной оболочки и образования каллуса возможно формирование целого растения
Подобно животным клеткам, обработанным инактивированным вирусом Сеида, протопласты растительных клеток также способны к слиянию. В данном случае в качестве индуктора выступают азотнокислый натрий, полиэтиленгликоль и другие соединения. Однако растительные модели от животных отличает принципиальная возможность клонирования целого растения с суммой признаков родителей из слившихся в единый протопласт двух партнеров по гибридизации. При слиянии клеток разных видов получены соматические, или парасексуальные, гибриды. Для генетической инженерии растительных клеток этот путь открывает большие перспективы.
Клеточный и организменный уровни тесно взаимообусловлены. В текущей время интенсивно разрабатываются методы искусственного оплодотворения яйцеклеток млекопитающих и человека в пробирке и выращивания в этих условиях эмбриона. В модельных опытах с клетками животных стало возможным переносить ядро из одной клетки в другую, обеспечивать слияние в одно целое двух или нескольких эмбрионов на разных стадиях развития, дробить их на два или большее число, включать посторонние клетки в эмбрион и т. д.
Для генетической инженерии на уровне организмов большой интерес представляют случаи получения аллофенных мышей, т. е. особей, содержащих генотипически разные ткани, произошедшие из клеток, полученных от разных родителей. Такие особи с генотипически разнокачественными тканями возникают при вмешательстве на самых ранних стадиях развития. Рождающийся мышонок является аллофенным, он несет ткани от разных родителей, т. е. объединяет их фенотипы. Можне получить аллофенные особи от трех, четырех и большего числа родителей. Аллофенные мыши, составленные из клеток даже гистонесовместимых родителей, развиваются нормально, без иммунных нарушений. Это показывает, что иммунологическая толерантность не просто выражение генотипа животного, она является итогом развития.
Большие перспективы открывает внесение ядра соматических клеток в безъядерные яйцеклетки. Дж. Гердон в 1962 г. в опытах с амфибией Xenopus laevis показал, что пересадка ядра из клеток кишечного эпителия головастиков в яйцеклетки, в которых ядро было убито ультрафиолетовым светом, дает полноценно развитых особей.
В принципе при пересадке в безъядерные яйцеклетки ядер из соматических клеток одной и той же особи мы имеем метод получения клона генотипически тождественных особей. При осуществлении таких приемов для млекопитающих они могут приобрести важнейшее практическое значение. В стадах популяциях крупного рогатого скота, овец и других животных встречаются генотипически уникальные животные особенно высокой продуктивности: с большими удоями молока, густотой и длиной шерсти и т. д. Методами селекции их генотип в целом из-за расщепления не воспроизводим в потомстве. Клонирование посредством пересадки ядер из соматических клеток таких особей, учитывая возможность получения практически неограниченного количества ядер от одного животного, в безъядерные яйцеклетки открыло бы путь к колоссальному повышению производительности в сельском хозяйстве.
Новые возможности для изучения взаимодействия ядра с цитоплазмой на уровне соматических клеток дает метод реконструкции клеток млекопитающих после соединения ядра и цитоплазмы из разных источников. Клетки разделялись на ядро (кариопласт) и на цитоплазму (цитопласт) в присутствии цитохолазина. Меченный ~Н-тимидином кариопласт с помощью инактивированного вируса Сендай был введен в цитопласт. Такие реконструированные клетки размножались.
Разработка методов микрохирургии яйцеклеток создала возможность клонирования млекопитающих. Удаление одного пронуклеуса из оплодотворенного яйца позволило осуществить развитие на базе генома оставшегося гаплоидного пронуклеуса. После удвоениянабора появляются полностью гомозиготные особи. Поскольку такими особями могут быть только самки, так как особи с половыми хромосомами — УУ — погибают, обычное половое размножение при получении клона невозможно. Клонирование может быть достигнуто лишь при повторении процедуры удаления из оплодотворенной яйцеклетки мужского пронуклеуса. Повторяя эту процедуру у потомков, можно получить группу особей, идентичных друг другу по генотипу, подлинно гомозиготных, повторяющих генотип исходного материнского генома, т. е. образовать клон из особей млекопитающих.