
- •1. Понятия; ген, генотип и фенотип. Фенотипическая и генотипическая изменчивость, мутации.
- •Доказательства роли ядра и хромосом в явлениях наследственности. Локализация генов в хромосомах.
- •4. Деление клетки и воспроизведение. Генетическая роль митоза и мейоза.
- •5. Кариотип. Специфичность морфологии и числа хромосом.
- •6. Молекулярные основы наследственности. Концепция «один ген - один полипептид». Белок как элементарный признак.
- •7. Доказательства генетической роли нуклеиновых кислот (трансформация у бактерий, опыты с вирусами). Структура днк и рнк. Модель днк Уотсона и Крика.
- •8. Функции нуклеиновых кислот в реализации генетической информации: репликация, транскрипция и трансляция. Методологическое значение принципа передачи генетической информации: днк —* рнк —* белок.
- •9. Свойства генетического кода. Доказательства триплетности кода. Расшифровка кодонов.
- •10.Строение хромосом: хроматида, хромомеры, эухроматические и гетерохроматические
- •11.Изменения в организации морфологии хромосом в ходе митоза и мейоза. Репликация
- •12.Молекулярная организация хромосом прокариот и эукариот. Компоненты хроматина:
- •13.Цели и принципы генетического анализа. Методы: гибридологический, мутационный,
- •14.Закономерности наследования при моногибридпом скрещивании, открытые г.
- •15.Представление об аллелях и их взаимодействиях: полное и неполное доминирование,
- •17.Закономерности наследования в ди- и полигибридных скрещиваниях, при моногенном
- •18.Неаллельные взаимодействия. Биохимические основы неаллельных взаимодействий.
- •19.Особенности наследования количественных признаков (полигенное наследование).
- •20.Половые хромосомы, гомо- и гетерогаметный пол; типы хромосомного определения
- •21.Наследование признаков, сцепленных с полом. Значение реципрокных скрещиваний для изучения сцепленных с полом признаков. Наследование при не расхождении половых хромосом.
- •22.Значение работ школы т. Моргана в изучении сцепленного наследования признаков.
- •23.Кроссинговер. Доказательства происхождения кроссинговера в мейозе и митозе на
- •24. Множественные перекресты. Интерференция. Линейное расположение генов в
- •25.Генетические карты, принцип их построения у эукариот. Цитологические карты
- •26.Особенности микроорганизмов как объекта генетических исследований. Организация
- •28.Особенности процессов, ведущих к рекомбинации у прокариот. Конъюгация у
- •29.Генетическая рекомбинация при трансформации. Трансдукция у бактерий. Общая и
- •30.Закономерности нехромосомного наследования, отличие от хромосомного
- •31.Материнский эффект цитоплазмы. Пластидная наследственность. Митохондриальная
- •32.Наследование дыхательной недостаточности у дрожжей и нейроспоры.
- •33.Инфекционные факторы внеядерной наследственности. Плазмидное наследование.
- •34.Понятие о наследственной и ненаследственной (модификационной) изменчивости.
- •35.Комбинативная изменчивость, механизм ее возникновения, роль в эволюции и
- •36.Геномные изменения: полиплоидия. Автополиплоиды, особенности мейоза и характер
- •37.Геномные изменения: анеуплоидия. Анеуплоидия: нуллисомики, моносомики,
- •38.Хромосомные перестройки. Внутри- и межхромосомные перестройки. Особенности
- •39.Классификация генных мутаций. Общая характеристика молекулярной природы
- •40.Спонтанный и индуцированный мутационный процесс. Многоэтапность и
- •41.Химический мутагенез. Особенности мутагенного действия химических агентов.
- •42.Представление школы Моргана о строении и функции гена. Функциональный и
- •43.Работы школы Серебровского по ступенчатому аллелизму. Псевдоаллелизм. Функциональней тест на аллелизм (цис-транс тест).
- •44.Исследование тонкой структуры гена на примере фага т4 (Бензер). Ген как единица функции (цистрон).
- •45.Интрон-экзонная организация генов эукариот, сплайсинг. Структурная организация генома эукариот. Классификация повторяющихся элементов генома.
- •46.Семейства генов. Псевдогены. Регуляторные элементы генома.
- •47.Генетический контроль и молекулярные механизмы репликации. Полигенный контроль процесса репликации. Схема событий в вилке репликации. Понятие о репликоне.
- •48.Системы рестрикции и модификации. Рестрикционные эндонуклеазы.
- •49.Проблемы стабильности генетического материала. Типы структурных повреждений в днк и репарационные процессы.
- •51.Рекомбинация: гомологический кроссинговер, сайтспецифическая рекомбинация, транспозиции. Доказательство механизма общей рекомбинации по схеме «разрыв-воссоединение».
- •5 2. Молекулярная модель рекомбинации по Холлидею. Генная конверсия. Сайт-специфическая рекомбинация: схема интеграции и исключения днк фага лямбда.
- •53.Механизмы спонтанного мутагенеза, гены мутаторы и антимутаторы. Понятие о мутагенных индуцибельных путях репарации; уф-мутагенез.
- •54.Принципы негативного и позитивного контроля. Оперонные системы регуляции (теория Жакоба и Моно). Генетический анализ лактозного оперона.
- •55.Регуляция транскрипции на уровне терминации на примере триптофанового оперона. Системная регуляция; роль циклической амф и гуанозинтрифосфата.
- •56.Принципы регуляции действия генов у эукариот. Регуляторная роль, гистонов, негистоновых белков, гормонов. Особенности организации промоторной области у эукариот.
- •57.Первичная дифференцировка цитоплазмы, действие генов в раннем эмбриогенезе, амплификация генов. Роль гомейозисных генов в онтогенезе.
- •58.Опыты по трансплантации ядер. Методы клонирования генетически идентичных организмов.
- •59.Тканеспецифическая активность генов. Функциональные изменения хромосом в онтогенезе (пуффы, «ламповые щетки»); роль гормонов, эмбриональных индукторов.
- •60. Применение метода соматической гибридизации для изучения процессов дифференцировки и для генетического картирования. Химерные (аллофенные) животные.
- •61. Совместимость и несовместимость тканей. Генетика иммунитета. Онкогены, онкобелки.
- •62. Задачи и методология генетической инженерии. Методы выделения и синтеза генов.
- •63.Понятие о векторах. Векторы на основе плазмид и днк фагов. Геномные библиотеки. Способы получения рекомбинантных молекул днк, методы клонирования генов.
- •65.Проблемы генотерапии. Значение генетической инженерии для решения задач биотехнологии, сельского хозяйства, медицины и различных отраслей народного хозяйства.
- •66. Понятие о виде и популяции. Понятие о частотах генов и генотипов. Математические модели в популяционной генетике. Закон Харди - Вайнберга, возможности его применения.
- •67. Методы изучения природных популяций. Факторы динамики генетического состава популяции (дрейф генов), мутационный процесс, межпопуляционные миграции, действие отбора.
- •68.Взаимодействие факторов динамики генетической структуры в природных популяциях. Понятие о внутрипопуляционном генетическом полиморфизме и генетическом грузе.
- •70.Молекулярно-генетические основы эволюции. Задачи геносистематики. Значение генетики популяций для медицинской генетики, селекции решения проблем сохранения генофонда и биологического разнообразия.
- •71.Предмет и методология селекции. Учение об исходном материале. Центры происхождения культурных растений по н.И. Вавилову. Понятие о породе, сорте, штамм.
- •73.Использование индуцированных мутаций и комбинативной изменчивости в селекции растений, животных и микроорганизмов. Роль полиплоидии в повышении продуктивности растений.
- •75.Явление гетерозиса и его генетические механизмы. Использование простых и двойных межлинейных гибридов и растениеводстве и животноводстве.
- •77.Особенности человека как объекта генетических исследований. Методы изучения генетики человека: генеалогический, близнецовый, цитогенетический, биохимический, онтогенетический, популяционный.
31.Материнский эффект цитоплазмы. Пластидная наследственность. Митохондриальная
наследственность.
МАТЕРИНСКИЙ ЭФФЕКТ . Влияние матери на потомков, обусловленное плазматическим наследованием, развитием эмбриона в утробный период и выращиванием потомков в подсосный период. Различают генетический и модификационный материнский эффект. Генетический не отличается от эффекта истинной плазматической наследственности, а модификационный связан с эмбриональным периодом и выращиванием потомства во время молочного периода.
Гены с материнским эффектом активны в организме самки. Продукты этих генов депонируются в яйце и определяют пространственные оси эмбриона, продольную (задне/переднюю) и дорсально/вентральную оси. В качестве примера на схеме приведена мРНК (mRNA), кодируемая геном bicoid. Эта мРНК локализована на переднем полюсе яйца и с началом эмбриогенеза транслирует белок, который диффундирует от места синтеза, формируя градиент. Продукты других генов с материнским эффектом также распределяются специфическим образом. Обычно это ДНК-связывающие белки, которые в качестве факторов транскрипции стимулируют или блокируют экспрессию других генов.
Пластидное наследование
Наследственность пластидная * plastid inheritance - - одна из форм наследственности цитоплазматической , при которой происходит наследование пластидных признаков (напр., пестролистность, описанная К.Корренсом у ночной красавицы Mirabilis jalapa). Н. п. не подчиняется законам Менделя, т. к. в зависимости от условий оплодотворения признак наследуется от обоих родителей или только от матери. Локализованная в пластидах часть генетического материала обозначается как пластом.
Наследование через митохондрии.
Эта наследственность связана с ДНК митохондрий. Митохондрии эукариотических клеток способны к размножению, причем у высших организмов признаки, обусловленные митохондриальной наследственностью, передаются только по женской линии. Это объясняется тем, что при оплодотворении цитоплазма сперматозоида не проникает в яйцеклетку, а следовательно, не проникают и мужские митохондрии.
32.Наследование дыхательной недостаточности у дрожжей и нейроспоры.
Взаимодействие ядерных и внеядерных генов. Цитоплазматическая мужская стерильность
у растений.
У некоторых грибов (дрожжи, нейроспора) была обнаружена дыхательная недостаточность, которая обусловлена необратимыми наследственными изменениями функции митохондрии – у них утрачена активность цитохромоксидазы.
Б. Эфрусси обнаружил штаммы дрожжей Saccharomyces cerevisiae, которые спонтанно образуют карликовые колонии с дыхательной недостаточностью. Поскольку колонии возникают при вегетативном размножении гаплоидных дрожжей, эта форма была названа вегетативным карликовым штаммом. Наряду с вегетативными карликовыми колониями была обнаружена форма, по фенотипу – росту и дыхательной недостаточности – сходная с первой, но она давала расщепление по признаку карликовости, как будто он определялся одним ядерным геном; эта форма была названа расщепляющимся карликовым штаммом.
Генетический анализ вегетативного и расщепляющегося карликовых штаммов показывает, что фенотип расщепляющейся карликовости определяется ядерным геном (при скрещиваниях наблюдается расщепление в отношении 1:1). При скрещивании вегетативных карликов и нормальных дрожжей диплоидная зигота, в которой есть митохондрии от нормальной формы, не дает расщепления – из спор (аскоспор) не появляются мелкие колонии. Следовательно, у этих форм геномы одинаковы, различалась лишь цитоплазма. Расщепления по типу цитоплазмы в мейозе не происходит. В данном эксперименте факт цитоплазматического наследования очевиден.
Получено и прямое доказательство роли митохондрии в наследственной передаче дыхательной недостаточности у дрожжей. Вегетативных карликов, лишенных клеточных оболочек, выращивали в присутствии изолированных митохондрии нормальных дрожжей. В результате часть образовавшихся колоний (2–2,5%) имели нормальные размеры. Этот факт можно объяснить, предположив, что «нормальные» митохондрии, попав в клетки вегетативных карликов, исправили дефект их дыхательной системы и, передаваясь из клетки в клетку в ходе деления, способствовали образованию нормальных колоний.
Помимо ядра, ДНК содержится в митохондриях, а у растений – еще и в хлоропластах. Поэтому те гены, которые находятся в ядерной ДНК, называют ядерными, а внеядерные, соответственно, митохондриальными и хлоропластными. Внеядерные гены контролируют часть энергетической системы клеток: гены митохондрий отвечают в основном за синтез ферментов реакций окисления, а гены хлоропластов – реакций фотосинтеза. Все остальные многочисленные функции и признаки организма определяются генами, находящимися в хромосомах. Ядерные и внеядерные гены могут взаимодействовать и при реализации фенотипа.
Цитоплазматическая мужская стерильность
Один из самых ярких примеров цитоплазматического наследования – явление цитоплазматической мужской стерильности (ЦМС), обнаруженное у многих растений – кукурузы, лука, свеклы, льна и др.
Цитоплазматическая мужская стерильность у кукурузы была открыта в 30-х годах одновременно в СССР М. И. Хаджиновым и в США М. Родсом (см. рис. 2). Кукуруза — однодомное растение, женские цветки у нее собраны в початок, мужские — в метелку. У некоторых сортов кукурузы были обнаружены растения, имевшие в метелках недоразвитые пыльники, часто совершенно пустые, а иногда с недоразвитой стерильной пыльцой. Оказалось, что этот признак определяется особенностями цитоплазмы. Опыление растений с мужской стерильностью нормальной пыльцой с других растений в большинстве случаев дает в потомстве растения со стерильной пыльцой. При повторении этого скрещивания в течение ряда поколений признак мужской стерильности не исчезает, передаваясь по материнской линии. Даже тогда, когда все 10 пар хромосом растений со стерильной пыльцой замещаются хромосомами от растений с фертильной пыльцой, мужская стерильность сохраняется. Это послужило убедительным доказательством того, что наследование данного признака осуществляется через цитоплазму. Цитоплазма, обусловливающая стерильность пыльцы, была обозначена символом цитS (стерильная цитоплазма), а цитоплазма растений с фертильной пыльцой— символом цитN (нормальная цитоплазма).
Установлено, что генотип растения может оказывать определенное влияние на действие стерильной цитоплазмы. Цитоплазма цитS может обусловить стерильность пыльцы только при наличии в генотипе растения рецессивного гена rf в гомозиготном состоянии rfrf. Если же этот ген представлен доминантной аллелью Rf, то растение цитS RfRf или цитS Rfrf имеет нормальную пыльцу. Аллель Rf является, таким образом, восстановителем фертильности пыльцы. Следовательно, фертильную пыльцу могут иметь растения и цumN rfrf, и цитN Rf–-, и цитS Rf–, а полностью стерильную – только растения цитS rfrf. Многократное повторение скрещивания ♀ цитS rfrf × ♂ цитN rfrf всегда дает потомство с полностью стерильной пыльцой. И только в случае скрещивания цumS rfrf × цumS RfRf (или цитN RfRf) может быть получено потомство, где все растения будут иметь нормальную пыльцу, несмотря на наличие цитоплазмы цumS. Следует еще раз подчеркнуть, что ген Rf не изменяет структуру и специфичность цитоплазмы цumS, а лишь тормозит проявление ее действия.