
- •Определенный интеграл. Интегральная сумма. Верхняя и нижняя интегральные суммы. Их свойства.
- •Ограниченность интегрируемых функций.
- •Критерий интегрируемости ограниченной на отрезке функции.
- •Теорема об интегрируемости монотонной и непрерывной на отрезке функции.
- •5. Основные свойства определенного интеграла.
- •Формула среднего значения для определенного интеграла.
- •7. Интеграл с переменным верхним пределом. Его непрерывность и дифференцируемость.
- •8. Формула Ньютона – Лейбница для определенного интеграла.
- •9. Вычисление определенного интеграла по частям и заменой переменной.
- •10. Применение определенного интеграла (площадь плоской фигуры, длина дуги кривой, объем тела вращения).
- •11. Понятие числового ряда и его сумма. Критерий Коши сходимости ряда. Необходимое условие сходимости.
- •12. Признаки Даламбера и Коши сходимости рядов с неотрицательными членами.
- •13. Интегральный признак Коши сходимости числового ряда.
- •14. Знакопеременные числовые ряды. Абсолютная и условная сходимость. Знакочередующиеся ряды. Признак Лейбница.
- •15. Функциональный ряд. Сумма ряда. Определение равномерной сходимости функционального ряда.
- •16. Признак Вейерштрассе равномерной сходимости.
- •18. Степенной ряд. Теорема Абеля.
- •19. Радиус сходимости степенного ряда. Формула Коши-Адамара для радиуса сходимости степенного ряда.
- •21. Функции многих переменных. Понятие n-мерного евклидова пространства. Множество точек евклидова пространства. Последовательность точек и ее предел. Определение функции нескольких переменных.
- •22. Предел функции нескольких переменных. Непрерывность функции. Частные производные.
- •23. Определение дифференцируемой функции нескольких переменных и ее дифференциала. Производные и дифференциалы высших порядков.
- •24. Формула Тейлора для функции многих переменных. Экстремум функции нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума.
- •25. Двойной интеграл и его свойства. Сведения двойного интеграла к повторному.
- •26. Тройной интеграл, сведение его к повторному.
- •27. Замена переменных в двойном интеграле. Пример случай полярных координат.
- •28. Замена переменных в тройном интеграле. Цилиндрические и сферические координаты.
- •29. Вычисление площади гладкой поверхности, заданной параметрически и в явном виде.
- •30(1). Определение криволинейных интегралов первого и второго рода, их основные свойства и вычисление.
- •30(2). Определение криволинейных интегралов первого и второго рода, их основные свойства и вычисление.
- •31. Формула Грина. Условия независимости криволинейного интеграла от пути интегрирования.
- •32(1). Поверхностные интегралы первого и второго рода, их основные свойства и вычисления.
- •32(2). Поверхностные интегралы первого и второго рода, их основные свойства и вычисления.
- •33. Теорема Гаусса-Остроградского, ее запись в координатной и векторной (инвариантной) формах.
- •34. Формула Стокса, ее запись в координатной и векторной (инвариантной) формах.
- •35. Скалярное и векторное поля. Градиент, дивергенция, ротор. Потенциальное и соленоидальное поля. Скалярное поле, векторное поле
- •Градиент скалярного поля. Дивергенция и ротор векторного поля
- •36. Оператор Гамильтона (набла), его применение (примеры).
- •38. Интегрирование оду первого порядка с разделяющимися переменными и однородных.
- •39. Интегрирование линейных оду первого порядка и уравнения Бернулли.
- •40. Интегрирование оду первого порядка в полных дифференциалах. Интегрирующий множитель.
- •Метод введения параметра.
- •42. Уравнения n-го порядка с постоянными коэффициентами. Характеристические уравнения. Фундаментальная система решений (фср) однородного уравнения, общее решение неоднородного уравнения.
- •43. Система линейных дифференциальных уравнений первого порядка. Фср однородной системы. Общее решение однородной и неоднородной системы.
23. Определение дифференцируемой функции нескольких переменных и ее дифференциала. Производные и дифференциалы высших порядков.
Пусть
функция u = F(x) определена
в области D и
−
фиксированная точка. Дадим приращение
каждому аргументу хţ :
Величину
будем
называть вектором
приращения. В
свою очередь функция u получит
приращение равное
Определение 1. Функция u = F(x) называется дифференцируемой в т. х , если ее приращение может быть представлено в следующем виде:
где
Aţ = Aţ(x)
и не
зависит от
Δх,
а
−
бесконечно малая при
Величина
вектора Δх равна:
Используя
это обозначение, можно написать
Легко
показать, что
{
}
Определение
2. Главная
и линейная часть приращения дифференцируемой
функции называется дифференциалом:
Вычисляя
частные производные ФНП, мы снова
получаем функцию тех же переменных, от
которой можно взять частную производную,
в том числе и по другой переменной (если
она, конечно, существует):
Частные
производные по одной и той же переменной
называются повторными,
а по различным переменным – смешанными.
Например:
Определение
1. Дифференциал
от первого дифференциала функции
называется вторым дифференциалом:
Аналогично
определяются дифференциалы более
старших порядков.
Вычислим
второй дифференциал функции двух
переменных
.
При этом будем считать, что дифференциалы
независимых переменных dx и dy –
величины постоянные (т.е. не зависят от
т.(х,у)
и не меняются при вычислении каждого
последующего дифференциала).
.
Не трудно видеть, что второй дифференциал представляет собой квадратичную форму от
переменных dx и dy. Матрица этой квадратичной формы есть матрица Гессе, т.е.
d2z = (dx,dy)Г(dx,dy)T (см. раздел «Линейная алгебра», квадратичные формы). Кроме того,
второй
дифференциал можно записать в
символическом виде:
Можно
показать, что в общем случае дифференциал 2
– го порядка функции u = F(x)
равен
Дифференциал m –
го порядка равен
24. Формула Тейлора для функции многих переменных. Экстремум функции нескольких переменных. Необходимое условие экстремума. Достаточное условие экстремума.
Если
функция
имеет
в некоторой окрестности точки
непрерывные
частные производные до (n+1)-го порядка
включительно, то для любой точки
из
этой окрестности справедлива формула
Тейлора n-го порядка:
,
где
,
,
Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М0(х0, у0) верно неравенство
то точка М0 называется точкой максимума.
Определение. Если для функции z = f(x, y), определенной в некоторой области, в некоторой окрестности точки М0(х0, у0) верно неравенство
то точка М0 называется точкой минимума.
Теорема. (Необходимые условия экстремума).
Если
функция f(x,y)
в точке (х0,
у0)
имеет экстремум, то в этой точке либо
обе ее частные производные первого
порядка равны нулю
,
либо хотя бы одна из них не существует.
Эту точку (х0, у0) будем называть критической точкой.
Теорема. (Достаточные условия экстремума).
Пусть в окрестности критической точки (х0, у0) функция f(x, y) имеет непрерывные частные производные до второго порядка включительно. Рассмотрим выражение:
1) Если D(x0, y0) > 0, то в точке (х0, у0) функция f(x, y) имеет экстремум, если
-
максимум, если
-
минимум.
2) Если D(x0, y0) < 0, то в точке (х0, у0) функция f(x, y) не имеет экстремума
В случае, если D = 0, вывод о наличии экстремума сделать нельзя.