
- •Определители и их св-ва.
- •Миноры и алгебраические дополнения
- •Методы вычисления определителей
- •Обратная матрица. Теорема о существ обратной матрицы.
- •Элементарные преобразования матрицы.
- •Ранг матрицы. Правило вычисления ранга матрицы.
- •Системы n линейных алгебраических уравнений с n неизвестными
- •Правило Крамера
- •Теорема Кронекера-Капелли.
- •Метод Гаусса.
- •Вектора. Коорд вектора в декартовой системе координат.
- •Направляющие косинусы вектора
- •Скалярное произведение векторов. Его свойства.
- •.Векторное произведение векторов. Его св-ва.
- •Смешанное произведения векторов
- •Общее уравнение плоскости
- •Уравн плоскости проходящей через три точки в отрезках
- •Параметрическое и каноническое уравнение прямой
- •Уравнение прямой, проходящей через 2 точки
- •Уравнением прямой с угловым коэффициентом k.
- •Угол между прямыми на плоскости.
- •Эллипс. Каноническое уравнение.
- •Каноническое уравнение гиперболы
- •Парабола. Каноническое уравнение.
- •Функция. Характеристики поведения. Сложная функция.
- •Пределы функций, их свойства.
- •Теоремы о пределах.
- •Первый замечательный предел.
- •Второй замечательный предел( показательно-степенной предел)
- •Непрерывность функции в точке. Свойства непрерывных функций.
- •Точки разрыва функции. Их классификации.
- •Производная функции, ее геометрический смысл.
- •Основные правила дифференцирования
- •Дифференцирование тригонометрических и обратных им функций.
- •Дифференцирование логарифмических, показательных и степенных функций
- •Логарифмическое дифференцирование
- •Дифференцирование обратных функций и функций заданных параметрически
- •Дифференциал функции. Геометрический смысл дифференциала.
- •Формула Тейлора.
- •Возрастание и убывание функций. Точки экстремума.
- •Необходимое условие существования экстремума.
- •Критические точки. Достаточные условия существования экстремума.
- •Исследование функции на экстремум с помощью производных высших порядков.
- •Выпуклость и вогнутость кривой. Точки перегиба.
- •Асимптоты.
- •Функции нескольких переменных (Определение, примеры).
- •Пределы функции нескольких переменных и их свойства
- •Частное и полное приращение функций нескольких переменных.
- •Непрерывность функции нескольких переменных их св-ва
- •Частные производные первого и высших порядков
- •Теорема о смешанных производных второго порядка
- •Полный дифференциал.
- •Касательная плоскость и нормаль к поверхности.
- •Формула Тейлора для функций нескольких переменных
- •Экстремум функции нескольких переменных.
- •Необходимые и достаточные условия существования безусловного экстремума.
- •Максимум и минимум функции нескольких переменных.
- •Первообразная.
- •Неопределенный интеграл и его свойства
- •Замена переменных в неопределенном интеграле
- •Простейшие приемы интегрирования. Интегрирование по частям.
- •Простейшие приемы интегрирования. Интегрирование способом замены переменной.
- •Разложение рациональных дробей на простейшие.
- •Интегрирование элементарных дробей.
- •Интегрирование рациональных функций
- •Интегрирование иррациональных функций.
- •Интегрирование тригонометрических функций
- •Задачи, приводящие к понятию определенного интеграла
- •Верхние и нижние интегральные суммы
- •Определенный интеграл, его свойства и простейшие методы интегрирования
- •Основные свойства определенного интеграла.
- •Геометрический и физический смысл определенного интеграла.
- •Формула Ньютона-Лейбница.
- •Приложения определенного интеграла к решению геометрических и механических задач.
- •1. Площадь плоской фигуры.
- •2. Площадь криволинейного сектора.
- •3. Объем тела вращения.
- •4. Длина дуги кривой.
- •5. Площадь поверхности вращения.
- •Вычисление работы сил
- •Несобственные интегралы первого рода
- •Несобственные интегралы второго рода
- •Длина дуги кривой.
- •Вычисление площадей в прямоугольных координатах.
- •Вычисление объема тела.
- •Объем тела вращения
- •Двойной интеграл.
- •Вычисление двойного интеграла
- •Классификация точек разрыва функции
- •Числовой ряд, сумма ряда.
- •Необходимое условие сходимости ряда.
- •Доказательство
- •Признаки сравнения. Признак Даламбера.
- •Признаки сравнения. Признак Коши.
- •Интегральный признак Коши
- •Интегральный сходимости знакопостоянных рядов.
- •Знакочередующийся ряд. Теорема Лейбница.
- •Степенной ряд. Теорема Абеля.
- •Интервал и радиус сходимости степенного ряда.
- •Дифференциальные уравнения первого порядка. Общее и частное решения.
- •Уравнения с разделенными и разделяющимися переменными.
- •Однородные уравнения первого порядка.
- •. Линейные однородные дифференциальные уравнения. Решение уравнения.
- •Уравнения в полных дифференциалах.
Точки разрыва функции. Их классификации.
Точки, в которых нарушается непрерывность функции, называются точками разрыва этой функции.
Если x = x0 – точка разрыва ф-ии y = f(x), то в ней не выполняется по крайней мере одно из условий непрерывности ф-ии.
Точка разрыва x0 называется точкой разрыва первого рода функции y = f(x), если в этой точке существуют конечные пределы функции слева и справа(односторонние пределы lim x->x0 – 0 f(x) =A1 b lim x->x0 +0 f(x) = A2) При этом, если А1=А2, то точка х0 – точка устранимого разрыва. Если А1 не равно А2, то точка х0 – точка конечного разрыва.
Точка разрыва х0 – точка разрыва второго рода функции y – f(x), если по крайней мере один из односторонних пределов (слева или справа) не существует или равен бесконечности.
Производная функции, ее геометрический смысл.
Производная. Рассмотрим
некоторую функцию y = f ( x )
в двух точках x0
и x0 +
: f ( x0 )
и f ( x0 +
). Здесь через
обозначено некотороемалое изменение
аргумента, называемое приращением
аргумента;
соответственно разность между
двумя значениями
функции: f ( x0 +
) f ( x0 )называется приращением
функции. Производной функции y = f ( x )
в точке x0 называется
предел:
Если этот предел существует, то функция f ( x ) называется дифференцируемой в точке x0 . Производная функции f ( x ) обозначается так:
Геометрический смысл производной. Рассмотрим график функции y = f ( x ):
Из рис.1 видно, что для любых двух точек A и B графика функции:
где
- угол
наклона секущей AB.
Таким образом, разностное отношение равно угловому коэффициенту секущей. Если зафиксировать точку A и двигать по направлению к ней точкуB, то неограниченно уменьшается и приближается к 0, а секущая АВ приближается к касательной АС. Следовательно, предел разностного отношения равен угловому коэффициенту касательной в точке A. Отсюда следует: производная функции в точке есть угловой коэффициент касательной к графику этой функции в этой точке. В этом и состоит геометрический смысл производной.
Основные правила дифференцирования
Если с - постоянное число, и u = u(x), v = v(x) - некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:
или
9 - Производная сложной функции
6 - Производная частного двух функций
5 - Производная произведения функций
3 - Производная алгебраической суммы функций
— Правило
дифференцирования сложной функции
Производная обратной функции :
Дифференцирование тригонометрических и обратных им функций.
Дифференцирование логарифмических, показательных и степенных функций
Заметим,
что функция
обратна
функции
Из
определения натурального логарифма
.
По
свойству 5)
функция
,
определенная при
,
дифференцируема во всех точках области
определения.
Экспонента – функция, обратная натуральному логарифму. Натуральный логарифм дифференцируем во всех точках области определения, причем производная ни в одной точке не равна нулю.
Следовательно, экспонента дифференцируема во всех точках и
функция
дифференцируема
во всех точках, и
Рассмотрим
функцию
.
,
следовательно, функция
дифференцируема
во всех точках
и