
- •2.Визначники n-го порядку. Мінори та алгебраїчні доповнення визначника. Розклад визначника за елементами рядка або стовпця(теорема Лапласа)
- •(Розклад за елементами першого рядка); (розклад за елементами другого стовпця).
- •Алгоритм знаходження оберненої матриці.
- •Властивості оберненої матриці.
- •5.Поняття про систему n-лінійних алгебраїчних рівнянь з m невідомими. Умови сумісності і визначеності слар.
- •6.Розв*язування слар. Метод оберненої матриці.
- •Точні методи
- •7.Розв*язування слар. Формули Крамера .
- •Міжгалузевий баланс
- •Модель Леонтьєва
- •11.Лінійна модель міжнародної торгівлі
- •13.Поняття квадратичної форми. Додатно визначені квадратичні форми. Критерій Сильвестра.
- •14.Поняття канонічного і нормального вигляду квадратичної форми. Методи зведення квадратичної форми до канонічного вигляду.
- •15.Дії над векторами в геометричній формі(додавання векторів та множення вектора на число)
- •16.Лінійна залежність векторів. Теореми про лінійну залежність системи векторів.
- •17.Базис. Розклад вектора за базисом. Ортогональна система векторів.
- •Для будь якого вектора (рівність Персеваля)
- •Для довільної пари векторів та
- •18.Координати вектора на площині та у просторі.
- •19.Скалярний лобуток векторів, його властивості,геометричний та механічний зміст.
- •Властивості
- •21.Мішаний добуток векторів та його властивості
- •22. Пряма, як лінія першого порядку. Загальне рівняння прямої на площині. Дослідження неповного рівняння прямої на площині.
- •23.Параметричні і канонічні рівняння прямої. Параметричне рівняння прямої на площині
- •Канонічне рівняння прямої на площині
- •24.Рівняння прямої, що проходить через дві задані точки. Рівняння прямої у відрізках на осях.
- •25.Рівння прямої з кутовим коефіцієнтом. Кут між двома прямими. Умови перпендикулярності і паралельності двох прямих.
- •26.Нормальне рівняння прямої. Відстаня від точки до прямої. Нормальне рівняння прямої
- •27.Загальне р-ня площини:
- •28.Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях. Рівняння площини, що проходить через три задані точки, які не лежать на одній прямій
- •29.Кут між двома площинами. Умова паралельності і перпендикулярності двох площин.
- •30.Нормальне рівняння площини. Відстань від точки до площини.
- •31.Параметричні і канонічні рівняння прямої у просторі. Рівняння прямої ,що проходить через дві точки.
- •32 . Кут між прямими . Умови паралельності і перпендикулярності двох прямих у просторі. .
- •34.Криві другого порядку. Рівняння кола.
- •35. Еліпс. Вивід канонічного рівняння еліпса, ексцентриситет та директриси еліпса.
- •Директриса та ексцентриситет
- •36. Гіпербола . Вивід канонічного рівняня гіперболи, ексцентриситет , директриси та асимптоти гіперболи. Найпростіші властивості гіперболи
- •37. Парабола. Вивід канонічного рівняння.
- •38.Числова послідовність. Означення границі послідовності. Нескінченно малі та нескінченно великі величини. Зв’язок між нескінченно малими і нескінченно великими величинами.
- •39.Означення границі функції. Односторонні границі. Леми про нескінченно малі величини.
- •Односторонні границі. Ліва та права границя функції
- •40. Арифметичні дії над функціями , що мають скінченні границі. Важливі границі.
- •41.Неперевність функції. Арифметичні дії над неперервними функціями. Класифікація розривів функції.
- •2) Неліквідовні розриви поділяються на розриви першого та другого роду.
- •42. Властивості неперервних функцій. Неперервність елементарних функцій.
- •43. Задачі, що приводять до поняття похідної. Означення похідної. Геометричний механічний та економічний зміст похідної.
- •44. Похідні елементарних функцій. Похідна оберненої функції. Таблиця похідних.
- •46. Означення диференціала
- •48. Похідні вищих порядків. Формула Тейлора
- •52. Опуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції. Загальна схема графіка функції.
- •54. Частинний і повний приріст ф-ції двох змінних. Частинні похідні. Повний диференціал
- •55. Похідні вищих порядків.Теорема про рівність мішаних похідних. Диф вищих порядків.
- •56. Необхідні та достатні умови екстремуму функції багатьох змінних
- •57. Поняття про умовний екстремум. Метод множників Лагранжа.
- •58. Поняття первісної функції і невизначеного інтеграла. Властивості первісних.
- •Теорема про множину первісних
- •Де f(X) – підінтегральна ф-ія; f(X)dx – підінтегральний вираз; dx – диференціал змінної інтегрування.
- •Метод інтегрування частинами
- •61. Інтегрування правильних дробів. Інтегрування раціональних дробів.
- •2) Складна ф-ція f(t)) – визначена і неперервна на відрізку [;], то справедлива формула:
- •63.Задачі, що приводять до поняття про визначений інтеграл. Інтегральні суми Умови існування визначеного інтегралу.
- •64.Властивості визначеного інтегралу. Обчислення визначеного інтегралу. Формула Ньютона - Лейбніца .
- •67.Поняття про диф. Р-ння та його розв язки Диф. Рівняння першого порядку. Загальний розвязок і загальний інтеграл рівняння першого порядку. Задача Коші .Частковий розвязок диф. Рівняння.
- •69.Однорідні відносно змінних диф рівняння першого порядку.
- •72.Лінійні диф рівняння другого порядку.
- •76.Числовий ряд та його збіжність. Необхідна умова збіжності ряду. Ряди з додатними членами. Теорема порівняння рядів.
- •1) Ознака порівняння рядів.
- •79.Степеневі ряди. Теорема Абеля. Радіус та інтервали збіжності степеневого ряду.
Для будь якого вектора (рівність Персеваля)
Для довільної пари векторів та
Ортонормована система u1, u2, … не міститься в жодній іншій ортонормованій системі простору . Для довільного вектора
із (uk, a) = 0 (k = 1, 2, …) випливає, що a = 0.
18.Координати вектора на площині та у просторі.
Прямокутна (декартова) система координат в просторі задається трійкою попарно перпендикулярних осей. |
Якщо вектор a, який знаходиться в прямокутній системі координат OXYZ, має початком точку A з координатами XA, YA, ZA, а кінцем – точку B з координатами XB, YB, ZB, то числа XB - XA, YB - YA, ZB - ZA називається його координатами: a( XB - XA; YB - YA; ZB - ZA).
Пряму x називають віссю абсцис, пряму у – віссю ординат. Кожній точці площини відповідають два числа (координати).
На першому місці записують координату по осі х (інакше - абсцису), на другому – координату по осі у (інакше - ординату).
Наприклад, точка А має координати 3 і 2: А(3; 2). І навпаки, пара чисел (-2; 3) визначає точку В(-2; 3).
19.Скалярний лобуток векторів, його властивості,геометричний та механічний зміст.
Скалярний
добуток
(англ.
dot product,
англ.
scalar product,
нім.
Skalarprodukt,
рос.
скалярное
произведение)
— математична операція над двома
векторами.
Cкалярний добуток векторів
та
обчислюється
за формулою:
де
та
є
довжинами
векторів,
а
дорівнює
косинусу
кута між цими векторами. Як і у випадку
звичайного множення,
знак множення можна не писати:
=
.
Два означення добутку векторів.
Скалярним добутком двох векторів - називається число, рівне добутку довжин цих векторів на косинус кута між ними.
Скалярним добутком двох векторів - називається число, рівне добутку довжини одного з цих векторів на проекцію іншого вектора на вісь, обумовлену першим з вказаних векторів.
Властивості
Попри те, що у випадку дійсних чисел є симетричним, тобто
, у випадку комплексних чисел є ермітовим, тобто
.
Скалярний добуток не асоціативний (і не може бути, оскільки результатом скалярного добутку є скаляр, а не вектор).
Скалярний добуток дистрибутивний по відношенню до додавання та віднімання.
В евклідовому просторі спряженим по відношенню до лінійного оператора A називається оператор A*, для якого виконується рівність:
для довільних x, y.[1]
20.Векторний добуток векторів та його властивості
Векторний добуток векторів.Векторним добутком вектора a на вектор b називається вектор, що позначається символами [ab] і визначається наступними трьома умовами:
1) модуль вектора [ab] дорівнює |a||b|sin(fi), де fi – кут між векторами a і b;
2) вектор [ab] перпендикулярний до кожного з векторів a i b;
v3) напрямок вектора [ab] відповідає правилу “правої руки”.
Це означає, що якщо вектори a,b і [ab] зведені до загального початку, то вектор [ab] має бути спрямованим так, як спрямований середній палець правої руки, великий палець якої спрямований за першим співмножником (тобто за вектором а), а вказівний – за другим (тобто за вектором b).
Векторний добуток залежить від порядку співмножників, а саме:[ab]=-[ba]. Модуль векторного добутку[ab] дорівнює площі паралелограма, побудованого на векторах a і b |[ab]|=S. Векторний добуток [ab] дорівнює нулю тоді і тільки тоді, коли вектори a i b колінеарні. Зокрема [aa]=0.
Якщо система координатних осей права і вектори a i b задані в цій системі своїми координатами: a={X_1,Y_1,Z_1}, b={X_2,Y_2,Z_2}, то векторний добуток вектора a на вектор b визначається за формулою: [a,b] = {визначник|(Y_1 Z_1)(Y_2 Z_2)|; - визначник|(X_1 Z_1)(X_2 Z_2)|; визначник|(X_1 Y_1)(X_2 Y_2)|}.