
- •2.Визначники n-го порядку. Мінори та алгебраїчні доповнення визначника. Розклад визначника за елементами рядка або стовпця(теорема Лапласа)
- •(Розклад за елементами першого рядка); (розклад за елементами другого стовпця).
- •Алгоритм знаходження оберненої матриці.
- •Властивості оберненої матриці.
- •5.Поняття про систему n-лінійних алгебраїчних рівнянь з m невідомими. Умови сумісності і визначеності слар.
- •6.Розв*язування слар. Метод оберненої матриці.
- •Точні методи
- •7.Розв*язування слар. Формули Крамера .
- •Міжгалузевий баланс
- •Модель Леонтьєва
- •11.Лінійна модель міжнародної торгівлі
- •13.Поняття квадратичної форми. Додатно визначені квадратичні форми. Критерій Сильвестра.
- •14.Поняття канонічного і нормального вигляду квадратичної форми. Методи зведення квадратичної форми до канонічного вигляду.
- •15.Дії над векторами в геометричній формі(додавання векторів та множення вектора на число)
- •16.Лінійна залежність векторів. Теореми про лінійну залежність системи векторів.
- •17.Базис. Розклад вектора за базисом. Ортогональна система векторів.
- •Для будь якого вектора (рівність Персеваля)
- •Для довільної пари векторів та
- •18.Координати вектора на площині та у просторі.
- •19.Скалярний лобуток векторів, його властивості,геометричний та механічний зміст.
- •Властивості
- •21.Мішаний добуток векторів та його властивості
- •22. Пряма, як лінія першого порядку. Загальне рівняння прямої на площині. Дослідження неповного рівняння прямої на площині.
- •23.Параметричні і канонічні рівняння прямої. Параметричне рівняння прямої на площині
- •Канонічне рівняння прямої на площині
- •24.Рівняння прямої, що проходить через дві задані точки. Рівняння прямої у відрізках на осях.
- •25.Рівння прямої з кутовим коефіцієнтом. Кут між двома прямими. Умови перпендикулярності і паралельності двох прямих.
- •26.Нормальне рівняння прямої. Відстаня від точки до прямої. Нормальне рівняння прямої
- •27.Загальне р-ня площини:
- •28.Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях. Рівняння площини, що проходить через три задані точки, які не лежать на одній прямій
- •29.Кут між двома площинами. Умова паралельності і перпендикулярності двох площин.
- •30.Нормальне рівняння площини. Відстань від точки до площини.
- •31.Параметричні і канонічні рівняння прямої у просторі. Рівняння прямої ,що проходить через дві точки.
- •32 . Кут між прямими . Умови паралельності і перпендикулярності двох прямих у просторі. .
- •34.Криві другого порядку. Рівняння кола.
- •35. Еліпс. Вивід канонічного рівняння еліпса, ексцентриситет та директриси еліпса.
- •Директриса та ексцентриситет
- •36. Гіпербола . Вивід канонічного рівняня гіперболи, ексцентриситет , директриси та асимптоти гіперболи. Найпростіші властивості гіперболи
- •37. Парабола. Вивід канонічного рівняння.
- •38.Числова послідовність. Означення границі послідовності. Нескінченно малі та нескінченно великі величини. Зв’язок між нескінченно малими і нескінченно великими величинами.
- •39.Означення границі функції. Односторонні границі. Леми про нескінченно малі величини.
- •Односторонні границі. Ліва та права границя функції
- •40. Арифметичні дії над функціями , що мають скінченні границі. Важливі границі.
- •41.Неперевність функції. Арифметичні дії над неперервними функціями. Класифікація розривів функції.
- •2) Неліквідовні розриви поділяються на розриви першого та другого роду.
- •42. Властивості неперервних функцій. Неперервність елементарних функцій.
- •43. Задачі, що приводять до поняття похідної. Означення похідної. Геометричний механічний та економічний зміст похідної.
- •44. Похідні елементарних функцій. Похідна оберненої функції. Таблиця похідних.
- •46. Означення диференціала
- •48. Похідні вищих порядків. Формула Тейлора
- •52. Опуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції. Загальна схема графіка функції.
- •54. Частинний і повний приріст ф-ції двох змінних. Частинні похідні. Повний диференціал
- •55. Похідні вищих порядків.Теорема про рівність мішаних похідних. Диф вищих порядків.
- •56. Необхідні та достатні умови екстремуму функції багатьох змінних
- •57. Поняття про умовний екстремум. Метод множників Лагранжа.
- •58. Поняття первісної функції і невизначеного інтеграла. Властивості первісних.
- •Теорема про множину первісних
- •Де f(X) – підінтегральна ф-ія; f(X)dx – підінтегральний вираз; dx – диференціал змінної інтегрування.
- •Метод інтегрування частинами
- •61. Інтегрування правильних дробів. Інтегрування раціональних дробів.
- •2) Складна ф-ція f(t)) – визначена і неперервна на відрізку [;], то справедлива формула:
- •63.Задачі, що приводять до поняття про визначений інтеграл. Інтегральні суми Умови існування визначеного інтегралу.
- •64.Властивості визначеного інтегралу. Обчислення визначеного інтегралу. Формула Ньютона - Лейбніца .
- •67.Поняття про диф. Р-ння та його розв язки Диф. Рівняння першого порядку. Загальний розвязок і загальний інтеграл рівняння першого порядку. Задача Коші .Частковий розвязок диф. Рівняння.
- •69.Однорідні відносно змінних диф рівняння першого порядку.
- •72.Лінійні диф рівняння другого порядку.
- •76.Числовий ряд та його збіжність. Необхідна умова збіжності ряду. Ряди з додатними членами. Теорема порівняння рядів.
- •1) Ознака порівняння рядів.
- •79.Степеневі ряди. Теорема Абеля. Радіус та інтервали збіжності степеневого ряду.
64.Властивості визначеного інтегралу. Обчислення визначеного інтегралу. Формула Ньютона - Лейбніца .
Якщо існує скінченна границя інтегральних сум Sn при lіà0 і не залежить ні від способу розбиття [a;b] на частини Dхі, ні від вибору точок xі, то ця границя називається визначеним інтегралом від ф-ії f(x) на проміжку [a;b]
За
означенням, визначений інтеграл
–
число, яке залежить від типу ф-ії f(x)
та проміжку [a;b]; він не залежить від
того, якою буквою позначена змінна
інтегрування.
Ф-ія, для якої на інтервалі існує визначений інтеграл називається інтегровною.
1)
Якщо
f(x)=c=const,
то
2) Сталий множник можна виносити з-під знака визначеного інтеграла.
3)
Якщо f1(x)
та
f2(x)
інтегровні
на [a;b], то:
4) Якщо у визначеному інтегралі поміняти місцями межі інтегрування, то інтеграл лише змінить свій знак на протилежний.
5) Визначений інтеграл з однаковими межами інтегрування дорівнює нулю.
6)
Якщо f(x)³0
і інтегровна для xÎ[a,b],
b>a, то
(Ньютона-Лейбніца): Якщо ф-ія f(x) – неперервна для xÎ [a;b], то визначений інтеграл від ф-ії f(x) на проміжку [a;b] дорівнює приросту первісної ф-ії f(x) на цьому проміжку, тобто:
де
F’(x)=f(x)
Зв’язок між визначеним та невизначеним інтегралами можна представити такою рівністю:
Наслідок: Для обчислення визначеного інтеграла достатньо знайти одну із первісних підінтегральної ф-ії і виконати над нею подвійну підстановку.
67.Поняття про диф. Р-ння та його розв язки Диф. Рівняння першого порядку. Загальний розвязок і загальний інтеграл рівняння першого порядку. Задача Коші .Частковий розвязок диф. Рівняння.
Диф. Рівнянням називається рівняння, яке містить шукану похідну ф-ції. Найбільший порядок похідних називається порядком диференційного рівняння.Найб. порядок пох. наз. порядком диф. р-ня.
Звич. ДР наз. нетотож. співвіднош. між шуканою ф-цією однієї змінної самою не залеж. змінною та пох. шук. ф-ції певних порядків.
Розв’язком ДР y’=f(x;y) наз. ф-ція у=j(х), яка при підстановці у ДР перетвор. його у тотож.
Розвязок, що містить довільні пост. наз загальним роз. ДР.
Розв., який одерж. із заг. При деяких дов. знач. дов. постійних наз. част. розв.
Розгл. ДР y’=f(x;y).
Задача пошуку розв. у=j(х), що задов. умови у=у0 при х=х0 наз. задачею Коші. Умови наз. початковими, а у0, х0 – поч. знач.
Нехай ф-ція f(x;y) непер. на обл. D
тоді при ( х0, у0)ÎD існує єд. розв. у=j(х) ДР, який задов. поч.. умови
у0=j(х0).
69.Однорідні відносно змінних диф рівняння першого порядку.
Означення: Д.Р. називається однорідним, якщо його можна подати у вигляді:
Воно
за допомогою заміни змінної y/x=u
Þy=ux
зводиться до Д.Р. з відокремлюваними
змінними.
та знаходження розв’язку зводиться до квадратур:
Означення: Д.Р. виду y’+P(x)y=Q(x) називається лінійним Д.Р. Якщо Q(x)¹0, то Д.Р. є однорідним, якщо Q(x)º0, то неоднорідним
72.Лінійні диф рівняння другого порядку.
В загальному випадку Д.Р. ІІ порядку має вигляд F(x,y,y’,y’’)=0. Загальний розв’язок рівняння містить 2 довільні сталі y=j(x,C1,C2) і за рахунок вибору C1 і С2 можна розв’язати задачу Коші, яка полягає в пошуку частинного розв’язку y=y(x), що задовольняє початковій умові y(x0)=y0, y’(x0)=y0’.
Однорідні.
Означення: Рівняння вигляду y’’+a1y’+a2y=0 називаються однорідними лінійними Д.Р.
Розв’язок:
y’’+a1y’+a2y=0
Складаємо характеристичне рівняння:
K2+a1K+a2=0
А) D>0
Б) D=0, K1,2= –b/2