
- •2.Визначники n-го порядку. Мінори та алгебраїчні доповнення визначника. Розклад визначника за елементами рядка або стовпця(теорема Лапласа)
- •(Розклад за елементами першого рядка); (розклад за елементами другого стовпця).
- •Алгоритм знаходження оберненої матриці.
- •Властивості оберненої матриці.
- •5.Поняття про систему n-лінійних алгебраїчних рівнянь з m невідомими. Умови сумісності і визначеності слар.
- •6.Розв*язування слар. Метод оберненої матриці.
- •Точні методи
- •7.Розв*язування слар. Формули Крамера .
- •Міжгалузевий баланс
- •Модель Леонтьєва
- •11.Лінійна модель міжнародної торгівлі
- •13.Поняття квадратичної форми. Додатно визначені квадратичні форми. Критерій Сильвестра.
- •14.Поняття канонічного і нормального вигляду квадратичної форми. Методи зведення квадратичної форми до канонічного вигляду.
- •15.Дії над векторами в геометричній формі(додавання векторів та множення вектора на число)
- •16.Лінійна залежність векторів. Теореми про лінійну залежність системи векторів.
- •17.Базис. Розклад вектора за базисом. Ортогональна система векторів.
- •Для будь якого вектора (рівність Персеваля)
- •Для довільної пари векторів та
- •18.Координати вектора на площині та у просторі.
- •19.Скалярний лобуток векторів, його властивості,геометричний та механічний зміст.
- •Властивості
- •21.Мішаний добуток векторів та його властивості
- •22. Пряма, як лінія першого порядку. Загальне рівняння прямої на площині. Дослідження неповного рівняння прямої на площині.
- •23.Параметричні і канонічні рівняння прямої. Параметричне рівняння прямої на площині
- •Канонічне рівняння прямої на площині
- •24.Рівняння прямої, що проходить через дві задані точки. Рівняння прямої у відрізках на осях.
- •25.Рівння прямої з кутовим коефіцієнтом. Кут між двома прямими. Умови перпендикулярності і паралельності двох прямих.
- •26.Нормальне рівняння прямої. Відстаня від точки до прямої. Нормальне рівняння прямої
- •27.Загальне р-ня площини:
- •28.Рівняння площини, що проходить через три задані точки. Рівняння площини у відрізках на осях. Рівняння площини, що проходить через три задані точки, які не лежать на одній прямій
- •29.Кут між двома площинами. Умова паралельності і перпендикулярності двох площин.
- •30.Нормальне рівняння площини. Відстань від точки до площини.
- •31.Параметричні і канонічні рівняння прямої у просторі. Рівняння прямої ,що проходить через дві точки.
- •32 . Кут між прямими . Умови паралельності і перпендикулярності двох прямих у просторі. .
- •34.Криві другого порядку. Рівняння кола.
- •35. Еліпс. Вивід канонічного рівняння еліпса, ексцентриситет та директриси еліпса.
- •Директриса та ексцентриситет
- •36. Гіпербола . Вивід канонічного рівняня гіперболи, ексцентриситет , директриси та асимптоти гіперболи. Найпростіші властивості гіперболи
- •37. Парабола. Вивід канонічного рівняння.
- •38.Числова послідовність. Означення границі послідовності. Нескінченно малі та нескінченно великі величини. Зв’язок між нескінченно малими і нескінченно великими величинами.
- •39.Означення границі функції. Односторонні границі. Леми про нескінченно малі величини.
- •Односторонні границі. Ліва та права границя функції
- •40. Арифметичні дії над функціями , що мають скінченні границі. Важливі границі.
- •41.Неперевність функції. Арифметичні дії над неперервними функціями. Класифікація розривів функції.
- •2) Неліквідовні розриви поділяються на розриви першого та другого роду.
- •42. Властивості неперервних функцій. Неперервність елементарних функцій.
- •43. Задачі, що приводять до поняття похідної. Означення похідної. Геометричний механічний та економічний зміст похідної.
- •44. Похідні елементарних функцій. Похідна оберненої функції. Таблиця похідних.
- •46. Означення диференціала
- •48. Похідні вищих порядків. Формула Тейлора
- •52. Опуклість і вгнутість графіка функції, точки перегину. Асимптоти графіка функції. Загальна схема графіка функції.
- •54. Частинний і повний приріст ф-ції двох змінних. Частинні похідні. Повний диференціал
- •55. Похідні вищих порядків.Теорема про рівність мішаних похідних. Диф вищих порядків.
- •56. Необхідні та достатні умови екстремуму функції багатьох змінних
- •57. Поняття про умовний екстремум. Метод множників Лагранжа.
- •58. Поняття первісної функції і невизначеного інтеграла. Властивості первісних.
- •Теорема про множину первісних
- •Де f(X) – підінтегральна ф-ія; f(X)dx – підінтегральний вираз; dx – диференціал змінної інтегрування.
- •Метод інтегрування частинами
- •61. Інтегрування правильних дробів. Інтегрування раціональних дробів.
- •2) Складна ф-ція f(t)) – визначена і неперервна на відрізку [;], то справедлива формула:
- •63.Задачі, що приводять до поняття про визначений інтеграл. Інтегральні суми Умови існування визначеного інтегралу.
- •64.Властивості визначеного інтегралу. Обчислення визначеного інтегралу. Формула Ньютона - Лейбніца .
- •67.Поняття про диф. Р-ння та його розв язки Диф. Рівняння першого порядку. Загальний розвязок і загальний інтеграл рівняння першого порядку. Задача Коші .Частковий розвязок диф. Рівняння.
- •69.Однорідні відносно змінних диф рівняння першого порядку.
- •72.Лінійні диф рівняння другого порядку.
- •76.Числовий ряд та його збіжність. Необхідна умова збіжності ряду. Ряди з додатними членами. Теорема порівняння рядів.
- •1) Ознака порівняння рядів.
- •79.Степеневі ряди. Теорема Абеля. Радіус та інтервали збіжності степеневого ряду.
43. Задачі, що приводять до поняття похідної. Означення похідної. Геометричний механічний та економічний зміст похідної.
Похідною функції f(x) у точці х0 називається границя (якщо вона існує) відношення приросту функції у точці х0 до приросту аргументу Δх, якщо приріст аргументу прямує до нуля і позначається f'(x0).
Механічний зміст похідної.
Було
розглянуто задачу про знаходження
миттєвої швидкості прямолінійного руху
матеріальної точки. Порівнюючи одержані
результати з означенням похідної, можна
зробити висновок: якщо матеріальна
точка рухається прямолінійно і її
координата змінюється по закону s
= s(t),
то швидкість її руху v(t)
в момент часу t
дорівнює
похідній s'(t):
44. Похідні елементарних функцій. Похідна оберненої функції. Таблиця похідних.
Константа
,
де
Сума і різниця похідних
Похідна від добутку і частки
[ред.] Похідна від складної функції
Похідна від оберненої функції
45. Похідна від складної функції
Неявна функція — математична функція, задана за допомогою рівняння.
Для функції від аргументу таке рівняння записується в загальній формі
,
де
-
функція від двох аргументів, на відміну
від явного
задання функції:
.
Прикладом неявної функції може служити рівняння кола:
,
де
—
радіус
кола.
Це рівняння задає двозначну функцію[1]
.
Похідна від неявної функції
Похідна від неявної фунції знаходиться як
46. Означення диференціала
Означення 5. Головну лінійну частину приросту функції називають диференціалом цієї функції. Диференціал функції у = f (х) позначають dy або df(x). Таким чином,
тобто
для знаходження диференціала функції
у = f
(х),
що має похідну в точці х, треба помножити
значення цієї похідної на приріст
аргумента
або на dx
(
= dx).
З рівності
(9)
одержимо,
,
тобто похідна функції дорівнює відношенню
диференціала функції до диференціала
незалежної змінної.
Диференціали часто застосовують для знаходження наближених значень функції.
Похідна суми, добутку і частки
47. Основні теореми диференціального числення
Теорема Роля
Теорема.
Нехай функція
задовольняє
умовам:
1)
визначена і неперервна на відрізку
:
2)
диференційована в інтервалі
;
3)
на кінцях відрізка набуває однакових
значень:
.
Тоді
всередині інтервалу
знайдеться
хоча б одна точка
в
якій
.Теорема
Лагранжа
Теорема.
Якщо функція
:
1) задана і неперервна на відрізку
;
2) диференційована в інтервалі
,
то тоді всередині інтервалу
знайдеться
хоча б одна точка
,
в якій справджуються рівність
.
Теорема Ферма — необхідна умова екстремуму.
Нехай
дійсна функція
f
визначена в околі деякої точки
і
має в цій точці похідну.
Тоді якщо в цій точці f
має екстремум то
.
Геометрично
це означає, що дотична
до графіка
функції f в
точці
горизонтальна.