Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
65 ответов к экзамену по материаловедению.docx
Скачиваний:
40
Добавлен:
11.09.2019
Размер:
1.07 Mб
Скачать
  1. Контроль качества цементованных изделий.

В результате цементации и термической обработки поверхностный слой должен иметь следующие структуры:

  1. мелко игольчатый высокоуглеродистый мартенсит

  2. небольшое колличество избыточных карбидов глобулярной формы

  3. остаточный аустенит (15 .. 20 %)

Сердцевина углеродистых сталей состоит из феррита и перлита (сорбит иногда), а у легированных сталей – феррита и мартенсита (бейнит). В микроструктуре слоя не допускается крупно игольчатый мартенсит, сетка цементитов или карбидов, скопление карбидов и остаточный аустенит больше 25%. Так же не допускается наличие структур не мартенситного происхождения (троостит) (трооститная сетка по границам). Рост ширины феррита – цементитных структур в поверхностных зонах слоя до 250 мкм снижает предел изгибно-усталостной прочности. Например, зубья шестерёнок – 40%, а долговечность падает в 5 раз.

Допустимые пределы отклонения в структуре (в свойствах) устанавливаются в соответствие с принятыми для данной детали стандартами (ОСТы 23.4.52-83). Для каждой структурной составляющей существует своя шкала бальности, по которой ведётся контроль. Стандарты разработаны применительно к конкретным условиям производства и назначения изделий. В сердцевине данной детали (например, шестерни) повышенную прочность и достаточную вязкость обеспечивает низко углеродистый мартенсит. Не допускается выделение в сердцевине сетки или обособленных участков феррита, так как его присутствие снижает прочность, пластичность, вязкость сердцевины.

Свойство цементованного слоя в основном определяется по структуре, а именно соотношением структурных составляющих, формой и размером карбидных фаз (влияющих на механические свойства), и по твёрдости (как поверхностного слоя так и сердцевины): твёрдость поверхностного слоя для углеродистых сталей 60 .. 64 HRC, сердцевины – 30 .. 45 HRC.

Как контролируется твёрдость: образец-свидетель – для измерения твёрдости по Роквеллу (HRC) – на нём проводится контроль толщины цементованного слоя. Чаще всего в практических условиях измеряется не общая, а эффективная толщина слоя. В качестве базового параметра принимают микроструктуру до границы феррито-перлитной зоны. То есть до появления феррита или структуры, содержащей 50% перлита и 50% феррита. Это будет соответствовать углероду 0,4%. На образце-свидетеле толщина слоя определяется линейным методом при увеличении х100.

Контроль содержания углерода: у образца-свидетеля делают химический анализ.

  1. Нитроцементация и цианирование. Особенности совместной диффузии в стали с и n.

Нитро цементация и цианирование

Это поверхностное насыщение стали одновременно углеродом и азотом в газовой среде (нитро цементация), или расплавленных цианистых ваннах (цианирование) (в NaCN, KCN).

Высокотемпературная нитро цементация и цианирование проводятся при температурах 850 .. 870°С. Применяется для конструкционных низкоуглеродистых сталей.

Проводится для улучшаемых сталей, для коррозионностойких сталей, для инструментальныхбыстро режущих сталей. Цель нитро цементации и цианирования – повышение износостойкости, пределовыносливости, сопротивление истиранию, повышение коррозионной стойкости поверхностного слоя деталей.

О собенности совместной диффузии углерода и азота в сталь

При увеличении температуры процесса содержание азота в диффузионном слое уменьшается, а содержание углерода непрерывно увеличивается.

Азот, диффундируя в сталь вместе с углеродом, оказывает существенное влияние на степень насыщения поверхностного слоя углеродом, и на глубину диффузии углеродом. Азот понижает температурную область существования γ-железа (аустенит), т.е. понижает температуру углеродного эвтектоидного превращенияс 727°С до 590°С, и способствует интенсивному науглероживанию сталей при более низких температурах, чем при цементации.

П ри нитро цементации процесс насыщения углеродом и азотом в газовой среде при высокой температуре имеет две стадии, разные по кинетике:

  1. В течении 1 – 3 часов сталь насыщается и углеродом, и азотом.

  2. Продолжается насыщение поверхности углеродом и происходит десорбция азота, т.е. выход части адсорбированных атомов азота с поверхности в газовую среду

Десорбция азота – результат кинетического взаимодействия атомов азота и углерода в стали, т.е. в определённых условиях механизм взаимодействия азота и углерода при их совместной диффузии в сталь заключается в том, что преобладаетпроникновение одного элемента (углерода) и торможение проникновения другого (азота). Газовая среда не меняется (контролируется и является постоянной).

Преимущества нитро цементации перед газовой цементацией

  1. Процесс нитро цементации получил широкое распространение в машиностроении для деталей, которые по условиям их работы должны иметь толщину диффузионного слоя до 1 мм (что меньше толщины слоя при газовой цементации).

  2. При насыщении сталей азотом снижается температура α-γ превращения. Это позволяет везти процесс при более низких температурах, и, одновременно, в присутствии азота увеличивается диффузионная подвижность углерода в аустените.

  3. При нитро цементации повышается износостойкость детали вследствие дополнительного насыщения азотом.

  4. П онижение температуры насыщения уменьшает длительность процесса, т.е. снижается время выдержки, что позволяет снизить деформацию обрабатываемых деталей, а так же уменьшить время на подстуживание перед закалкой. Для высокотемпературной нитро цементации (и для газовой цементации) применяют одно и то же оборудование, и одинаковые процессы

  5. термической обработки.

Технология нитроцементации

Температура нагрева – 850 .. 870°С. В качестве газовой среды используют:

  1. 8 .. 10 % природного газа (источник углерода) для получения в поверхностном слое 0,8 .. 1 % углерода. Сюда же 2 .. 5 % NH3(аммиак)(источник азота) для получения 0,2 .. 0,4 % азота. Остальное – эндотермический нейтральный газ.

  2. В шахтных печах (жидкость) среда сентин, керосин, тританоламин (C2H5O)3N (всё это в виде капель) + добавляем аммиак.

П осле насыщения проводится термическая обработка:

  1. С повторным нагревом (как и в цементации)(воосновном для шахтных печей)

  2. С подстуживанием (в безмуфильных агрегатах). Используются стали 25ХГТ, 25ХГМ. При подстуживании аустенит (~1%), насыщенный азотом, распадается на карбо-нитриды и аустенит (~0,82%), с образованием фазы При закалке . При отпуске .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]