- •Дати характеристику морфо-фізіологічним пристосування птахів до польоту.
- •2. Особливості розмноження птахів.
- •3. Характеристика екологічної групи чагарниково-лісових птахів.
- •4. Характеристика екологічної групи водяних птахів.
- •5. Характеристика екологічної групи хижих птахів.
- •6. Сезонні міграції птахів, їх значення.
- •7. Характеристика польоту птахів як локомоторної функції.
- •8. Характеристика шкіри ссавців та її похідних.
- •9. Особливості будови і функції системи травлення жуйних ссавців.
- •10. Характеристика підкласу сумчастих, їх розмноження.
- •11. Характеристика підкласу яйцекладних ссавців, їх розмноження.
- •12. Характеристика ряду ластоногих, їх розмноження.
- •13. Характеристика ряду китоподібних, їх особливості фізіології та розмноження.
- •14. Характеристика екологічної групи наземних ссавців, підгрупи мешканців відкритих просторів.
- •15. Характеристика екологічної групи підземних ссавців.
- •16. Дати порівняльну характеристику будови шкіряних покровів амфібій, рептилій і ссавців.
- •17. Дати порівняльну характеристику будови кровоносної системи рептилій і ссавців.
- •18. Дати порівняльну характеристику будови кровоносної системи риб і амфібій.
- •19. Дати порівняльну характеристику будови дихальної системи рептилій і птахів.
- •20. Дати порівняльну характеристику будови видільної системи амфібій і рептилій.
- •22. Екологія і систематика плазунів: Ряд Крокодили, Ряд Черепахи – поширення, вимоги до середовища, особливості здобування їжі, розмноження на прикладі представників.
- •23. Тип Членистоногі (Arthropoda). Клас Павукоподібні. Особливості зовнішньої та внутрішньої морфології. Фізіологія та розвиток. Значення у житті людини.
- •24. Тип Молюски (Mollusca). Систематика. Головні ознаки типу. Значення у житті людини.
- •25. Тип Голкошкірі (Echinodermata). Систематика. Головні ознаки типу. Значення у житті людини.
- •26. Гідробіологія як наука. Предмет, метод і задачі гідробіології. Історія виникнення і розвитку гідробіології. Місця мешкання гідробіонтів. Методика гідробіологічних досліджень.
- •27. Рух гідробіонтів. Сприйняття середовища та орієнтація руху. Активні рухи гідробіонтів. Пасивні рухи гідробіонтів.
- •28. Автотрофне живлення гідробіонтів. Фотосинтез. Хемосинтез. Мінеральне живлення автотрофних організмів.
- •29. Гетеротрофне живлення гідробіонтів. Форми живлення та їжа гетеротрофних гідробіонтів.
- •30. Дихання гідробіонтів. Адаптація гідробіонтів до газообміну.
- •31. Загальна характеристика типу «Молюски». Підтип Раковинні (Conchifera). Клас Черевоногі молюски (Gastropoda). Морфологія, фізіологія, розвиток
- •32. Підтип Боконервні (Amphineura). Клас Панцирні, або Хітони (Loricata, Polyplacophora). Морфологія, фізіологія, розвиток
- •33. Підтип Раковинні (Conchifera). Клас Моноплакофори (Monoplacophora). Морфологія, фізіологія, розвиток.
- •35. Підтип Раковинні (Conchifera). Клас Головоногі (Cephalopoda). Морфологія, фізіологія, розвиток.
- •Клітина та її морфологія. Клітинна оболонка
- •Мембранні органели загального призначення: мітохондрії, лізосоми, пероксісоми, епс, комплекс Гольджи.
- •3. Немембранні органели загального призначення: рибосоми, мікрофіламенти, мікротрубочки, клітинний центр.
- •Включення цитоплазми: жирові, глікогенові, пігментові, секреторні, білкові.
- •Ядро клітини: оболонка, каріоплазма, ядерце, хроматин.
- •Поділ клітини. Фази клітинного циклу. Хромосоми.
- •Запліднення, імплантація, дроблення.
- •9.Ембріогенез птахів. Утворення провізорних органів. Препарати: тотальний розріз курячого зародку.
- •Провізорні органи ссавців. Вивчення препаратів: амніоні стична оболонка плода людини , поперечний розріз пуповини, ворсинка хоріону.
- •11. Епітеліальні тканини.
- •Багатошаровий епітелій.
- •Власне сполучна тканина.
- •Хрящова тканина.
- •Кісткова тканина.
- •Розвиток кісткової тканини.
- •М’язові тканини.
- •Нервова тканина.
- •Анатомо-фізіологічна характеристика вікових періодів розвитку дитячого організму. Вікова періодизація за а.А. Маркосяном.
- •Ріст та розвиток організму. Закономірності.
- •Анатомо-фізіологічні та вікові особливості опорно-рухового апарату.
- •1. Скелет и его возрастные особенности
- •2. Развитие мышечной системы
- •24. Анатомо-фізіологічні та вікові особливості серцево-судинної системи.
- •3. Возрастные особенности системы кровообращения :
- •4. Возрастные особенности реакции сердечно-сосудистой системы на физическую нагрузку
- •Анатомо-фізіологічні та вікові особливості органів дихання.
- •Анатомо-фізіологічні та вікові особливості органів травлення.
- •Анатомо-фізіологічні та вікові особливості органів виділення.
- •Анатомо-фізіологічні та вікові особливості ендокринної системи.
- •3. Влияние гормонов на рост организма
- •4. Роль гормонов в адаптации организма к физическим нагрузкам
- •Анатомо-фізіологічні та вікові особливості нервової системи.
- •Фізіологія внд дітей та підлітків.
- •Головний комплекс гістосумісності. Гени гкгс.
- •Система компліменту. Лізини.
- •Запалення – етапи, роль, білки гострої фази.
- •Антигени. Класифікація антигенів. Рецептори лімфоцитів, розпізнавання антигенів.
- •Імунна пам`ять, клітини пам’яті.
- •Цитокіни. Номенклатура цитокінів. Функції цитокінів (інтерферонів, інтерлейкінів).
- •Загальні імунологічні феномени: протиінфекційний імунітет (відповідь на бактеріальні, паразитарні та вірусні інфекції, вакцини); алогенні реакції. Аутоімунні захворювання.
- •Неадекватні реакції імунної системи: анафілаксія і алергія, антитіло-залежна клітинна цитотоксичність.
- •Групи крові. Резус фактор.
- •Фізіологія дихання. Поняття про дихання. Газообмін. Транспорт газів кров’ю. Регуляція дихання.
- •Травлення в ротовій порожнині. Слиновиділення. Склад слини. Ферменти. Нервова та гуморальна регуляція роботи слинних залоз.
- •Травлення в кишечнику. Секреторна функція підшлункової залози. Печінка та її роль в травленні. Всмоктування продуктів травлення.
- •Залози внутрішньої, зовнішньої та змішаної секреції.
- •Функції гормонів. Функціональна класифікація гормонів.
- •Характеристика гіпофізу. Гормони гіпофізу.
- •Гормон паращитовидних залоз. Гіпо- і гіперфункція паращитовидних залоз.
- •Розташування і будова статевих залоз. Загальна характеристика гормонів статевих залоз, їх функції та регуляція. Гіпо- і гіперфункція статевих залоз.
- •Розташування і будова підшлункової залози. Загальна характеристика гормонів підшлункової залози, їх функції та регуляція. Гіпо- і гіперфункція підшлункової залози.
- •Розташування і будова епіфізу. Загальна характеристика гормонів епіфізу, їх функції та регуляція. Гіпо- і гіперфункція епіфізу.
- •Прооксидантно-антиоксидантна система організму (пас).
- •1.1.3. Система ферментов глутатиона.
- •Класифікація антиоксидантів.
- •Перекисне окиснення ліпідів (пол). Активні форми кисню.
- •Вільно радикальне перекисне окиснення. Джерела активних форм кисню.
- •Серологічні дослідження (ргАд, ргга, рн, рзк). Використання цих реакцій на практиці.
- •Механізми дії радіаційного опромінення.
- •Дози радіо опромінення. Летальні та тривалі.
- •Основні еколого-токсикологічні чинники на Україні.
- •Детоксикація в печінці.
- •Захист людини від надмірного опромінення.
- •Поняття про консорції. Характеристика типів консорцій.
- •Роль ґрунтових водоростей в природі.
- •Характеристика планктонних водоростей.
- •Класифікація трофічних груп грибів.
- •Лишайники як симбіотичні організми.
- •Морфологічні типи будови талому водоростей.
- •Характеристика грибів-герботрофів.
- •Загальна характеристика відділу Квіткові рослини (Magnoliophyta). Основні ознаки квіткових рослин. Квітка. Суцвіття. Цикл розвитку покритонасінних.
- •Загальна характеристика відділу Зостерофілофіти (Zosterophyllophyta). Основні представники (зостерофілум, гослінгія). Філогенетичне значення відділу.
- •Загальна характеристика відділу Риніофіти (Rhyniophyta). Основні представники (куксонія, ринія, псилофіт). Філогенетичне значення риніофітів.
- •Структура, хімічний склад і функції атф в рослинній клітині.
- •Дихання, енергетичний баланс. Взаємозв’язок з іншими процесами.
- •1. Інтродукція рослин як ботанічна наука.
- •2. Теоретичні основи інтродукції рослин.
- •3. Екологічні групи рослин по відношенню до трофності субстрату.
Антигени. Класифікація антигенів. Рецептори лімфоцитів, розпізнавання антигенів.
Антигены и иммуногены (от antigen = antibody-generating — «производители антител») — это вещества, которые организм человека рассматривает как чужеродные или потенциально опасные и против которого начинает вырабатывать собственные антитела и могут вызывать иммунный ответ. В настоящее время известно, что иммунная система состоит не только из антител. Под иммуногенами понимают все соединения, которые могут быть распознаны адаптивной иммунной системой. Строго говоря, иммуногены — это такие вещества, которые вызывают ответ иммунной системы, в то время как антигены связываются с соответствующими антителами.[1]
Антигены, как правило, являются белками или полисахаридами и представляют собой структуры бактериальных клеток, вирусов и других микроорганизмов. Липиды и нуклеиновые кислоты проявляют антигенные свойства в сочетании с белками. Однако простые вещества, даже металлы, также могут становиться антигенами в сочетании с собственными протеинами человеческого организма и их модификациями. Они называются гаптены (haptens).
Антигены немикробного происхождения — это пыльца, яичный белок и белки трансплантатов тканей и органов, а также поверхностные белки клеток крови при гемотрансфузии.
Классификация антигенов.
1. По происхождению:
1) естественные (белки, углеводы, нуклеиновые кислоты, бактериальные экзо– и эндотоксины, антигены клеток тканей и крови);
2) искусственные (динитрофенилированные белки и углеводы);
3) синтетические (синтезированные полиаминокислоты, полипептиды).
2. По химической природе:
1) белки (гормоны, ферменты и др.);
2) углеводы (декстран);
3) нуклеиновые кислоты (ДНК, РНК);
4) конъюгированные антигены (динитрофенилированные белки);
5) полипептиды (полимеры a-аминокислот, кополимеры глутамина и аланина);
6) липиды (холестерин, лецитин, которые могут выступать в роли гаптена, но, соединившись с белками сыворотки крови, они приобретают антигенные свойства).
3. По генетическому отношению:
1) аутоантигены (происходят из тканей собственного организма);
2) изоантигены (происходят от генетически идентичного донора);
3) аллоантигены (происходят от неродственного донора того же вида);
4) ксеноантигены (происходят от донора другого вида).
4. По характеру иммунного ответа:
1) тимусзависимые антигены (иммунный ответ зависит от активного участия Т-лимфоцитов);
2) тимуснезависимые антигены (запускают иммунный ответ и синтез антител В-клетками без Т-лимфоцитов).
Выделяют также:
1) внешние антигены; попадают в организм извне. Это микроорганизмы, трансплантированные клетки и чужеродные частицы, которые могут попадать в организм алиментарным, ингаляционным или парентеральным путем;
2) внутренние антигены; возникают из поврежденных молекул организма, которые распознаются как чужие;
3) скрытые антигены – определенные антигены (например, нервная ткань, белки хрусталика и сперматозоиды); анатомически отделены от иммунной системы гистогематическими барьерами в процессе эмбриогенеза; толерантность к этим молекулам не возникает; их попадание в кровоток может приводить к иммунному ответу.
Лимфоциты взаимодействуют с антигенами посредством рецепторов экспрессированных на поверхности клеток.
Рецепторы лимфоцитов представляют собой гликопротеидные молекулы, состоящие из полипептидных цепей, соединенных дисульфид-ными связями. Они относятся к суперсемейству иммуноглобулинов. Полипептидные цепи, составляющие рецепторы для антигенов, как и молекулы гуморальных антител, состоят из вариабильных доменов, определяющих их специфичность, и константных доменов, в том числе доменов, соединяющих рецептор с мембраной клетки.
Антигенраспознающие рецепторы В-лимфоцитов
Антигенраспознающие рецепторы В-лимфоцитов представляют собой молекулы иммуноглобулинов, чаще классов М и D. После активации В-лимфоцита антигеном на нем могут экпрессироваться молекулы других классов. Один В-лимфоцит содержит 200-500 тыс. однородных рецепторов, обладающих специфичностью к одному из антигенов. Соединение молекулы с клеткой осуществляют три конечные аминокислоты, находящиеся в составе трансмембранного домена ее тяжелых цепей и погруженные в мембрану клетки.
Рецепторы Т-лимфоцитов
Рецепторы Т-лимфоцитов представляют собой две полипептидные цепи, состоящие из вариабильных и константных доменов, участки которых проходят через поверхностную мембрану лимфоцита и погружены в цитоплазму. Связь рецептора с клеткой усиливают дополнительные гликопротеиды, входящие в состав мембран. Антигенные рецепторы Т-лимфоцитов представлены двумя вариантами: α-β (более 90% Т-лимфоцитов крови) и γ-δ, содержание которых в коже, кишечнике, репродуктивных органах значительно выше, чем в приферической крови. Общее число рецепторов на Т-клетке составляет 10-20 тыс.
Т-клеточные рецепторы тесно связаны с другими гликопротеино-выми молекулами мембраны клетки, способствующими передаче антигенного сигнала от рецептора клетке. Эта группа молекул, обозначенная CD3, может быть выявлена на поверхности лимфоцитов с помощью моноклональных антител и служит маркером Т-лимфоцитов. С Т-клеточным рецептором связана еще группа гликопротеиновых молекул, определяющих восприятие лимфоцитом молекул МНС I либо II класса. Эти молекулы, обозначенные соответственно CD8 и CD4, служат маркерами для выявления цитотоксических и хелперных субпопуляций Т-лимфоцитов.
Чтобы развился иммунный ответ, внешние антигены сначала должны распознаться иммунной системой. Механизмы распознавания недостаточно изучены, они зависят от характера (типа) антигена, пути проникновения его в организм и т.д. Оптимальный иммунный ответ на наибольшее количество антигенов возникает только после взаимодействия антигена с макрофагами, T- и B-лимфоцитами. Макрофаги при этом играют роль клетки, «обрабатывающей» антиген. Дендритические ретикулярные клетки в лимфоидных фолликулах и интердигитирующие ретикулярные клетки в паракортикальной зоне лимфатических узлов, как предполагается, также являются специализированными макрофагами, приспособленными для “обработки” антигенов для B-лимфоциты и T-лимфоциты соответственно (см. ниже).
Антитіла. Класи Ig, їх будова, функції. Біосинтез антитіл. Гібридоми та моноклональні антитіла. Гібридомна технологія.
И Антитела (иммуноглобулины, ИГ, Ig) — это растворимые гликопротеины, присутствующие в сыворотке крови, тканевой жидкости или на клеточной мембране, которые распознают и связывают антигены. Иммуноглобулины синтезируются В-лимфоцитами (плазматическими клетками) в ответ на чужеродные вещества определенной структуры — антигены. Антитела используются иммунной системой для идентификации и нейтрализации чужеродных объектов — например, бактерий и вирусов. Антитела выполняют две функции: антиген-связывающую функцию и эффекторную (например запуск классической схемы активации комплемента и связывание с клетками), являются важнейшим фактором специфического гуморального иммунитета, состоят из двух лёгких цепей и двух тяжелых цепей. У млекопитающих выделяют пять классов иммуноглобулинов — IgG, IgA, IgM, IgD, IgE, различающиеся между собой по строению и аминокислотному составу тяжелых цепей.
Иммуноглобулины всех изотипов бифункциональны. Это означает, что иммуноглобулин любого типа распознает и связывает антиген, а затем
усиливает киллинг и/или удаление иммунных комплексов, сформированных в результате активации эффекторных механизмов.
Одна область молекулы антител (Fab) определяет ее антигенную специфичность, а другая (Fc) осуществляет эффекторные функции: связывание с рецепторами, которые экспрессированы на клетках организма (например, фагоцитах); связывание с первым компонентом (C1q) системы комплемента для инициации классического пути каскада комплемента.
IgG является основным иммуноглобулином сыворотки здорового человека (составляет 70-75 % всей фракции иммуноглобулинов), наиболее активен во вторичном иммунном ответе и антитоксическом иммунитете. Благодаря малым размерам (коэффициент седиментации 7S, молекулярная масса 146 кДа) является единственной фракцией иммуноглобулинов, способной к транспорту через плацентарный барьер и тем самым обеспечивая иммунитет плода и новорожденного. В составе IgG 2-3% углеводов; два антигенсвязывающих Fab-фрагментов и один FC. Fab-фрагмент (50-52 кДа) состоит из целой L-цепи и N-концевой половины H-цепи, соединённых между собой дисульфидной связью, тогда как в FC-фрагмент (48 кДа) входит только половина H-цепей. Всего в молекуле IgG 12 доменов (участки, сформированные из β-структуры и α-спиралей полипептидных цепей Ig в виде неупорядоченных образований, связанных между собой дисульфидными мостиками аминокислотных остатков внутри каждой цепи): по 4 на тяжёлых и по 2 на лёгких цепях.
IgM представляют собой пентамер основной четырехцепочечной единицы, содержащей две μ- цепи. При этом каждый пентамер содержит одну копию полипептида с J-цепью (20 кДа), который синтезируется антителообразующей клеткой и ковалентно связывается между двумя соседними FC-фрагментами иммуноглобулина. Появляются при первичном иммунном ответе B-лимфоцитами на неизвестный антиген, составляют до 10 % фракции иммуноглобулинов. Являются наиболее крупными иммуноглобулинами (970 кДа). Содержат 10-12% углеводов. Образование IgM происходит ещё в пре-B-лимфоцитах, в которых первично синтезируются из μ-цепи; синтез лёгких цепей в пре-B-клетках обеспечивает их связывание с μ-цепями, в результате образуются функционально активные IgM, которые встраиваются в поверхностные структуры плазматической мембраны, выполняя роль антиген распознающего рецептора; с этого момента клетки пре-B-лимфоцитов становятся зрелыми и способны участвовать в иммунном ответе.
IgA сывороточный IgA составляет 15-20 % всей фракции иммуноглобулинов, при этом 80 % молекул IgA представлено в мономерной форме у человека. Секреторный IgA представлен в димерной форме в комплексе секреторным компонентом, содержится в серозно-слизистых секретах (например в слюне, слезах, молозиве, молоке, отделяемом слизистой оболочки мочеполовой и респираторной системы). Содержит 10-12% углеводов, молекулярная масса 500 кДа.
IgD составляет менее одного процента фракции иммуноглобулинов плазмы, содержится в основном на мембране некоторых В-лимфоцитов. Функции до конца не выяснены, предположительно является антигенным рецептором с высоким содержанием связанных с белком углеводов для В-лимфоцитов, еще не представлявшихся антигену. Молекулярная масса 175 кДа.
IgE в свободном виде в плазме почти отсутствует. Способен осуществлять защитную функцию в организме от действия паразитарных инфекций, обуславливает многие аллергические реакции. Механизм действия IgE проявляется через связывание с высоким сродством (10−10М) с поверхностными структурами базофилов и тучных клеток, с последующим присоединением к ним антигена, вызывая дегрануляцию и выброс в кровь высоко активных аминов (гистамина и серотонина - медиаторов воспаления). 200 кДа.
образование специфических иммуноглобулинов, индуцированное антигеном; происходит главным образом в зрелых плазматических клетках, а также в плазмобластах и лимфобластах.
Прежде чем начнется синтез антител , первичный транскрипт РНК ( пре-РНК ) должен освободиться от интронов путем сплайсинга .
Матричная (информационная) РНК для тяжелой цепи секретируемой формы иммуноглобулина покидает ядро и поступает в цитоплазму, где связывается с рибосомой и транслируется на ней. Транслированная на рибосоме лидерная (сигнальная) последовательность (L) синтезируемого полипептида связывается с частицей SPR (signal recognition particle), узнающей сигнал, которая блокирует дальнейшую трансляцию . Комплекс SPR- рибосома мигрирует к эндоплазматическому ретикулуму (ЭР) . Трансляция при этом может продолжаться, и синтезируемая цепь проникает сквозь мембрану внутрь ЭР. Лидерная последовательность в просвете ЭР отщепляется, и готовая цепь объединяется с другими H-цепями и L-цепями в субъединицу молекулы иммуноглобулина. Группа ферментов присоединяет к иммуноглобулину углеводы, и одновременно от ЭР отделяется транспортный пузырек с молекулой Ig. В комплексе Гольджи другая группа ферментов модифицирует углеводные единицы иммуноглобулина, и затем полностью готовая молекула Ig секретируется из клетки путем обратного пиноцитоза .
Мембраносвязанная и секретируемая формы Ig процессируются по- разному для правильной внутриклеточной сортировки (механизм которой пока полностью неясен) и достижения места назначения.
Моноклональные антитела — антитела, вырабатываемые иммунными клетками, принадлежащими к одному клеточному клону, то есть произошедшими из одной плазматической клетки-предшественницы. Моноклональные антитела могут быть выработаны на почти любое вещество (в основном белки и полисахариды), которое антитело будет специфически связывать. Они могут быть далее использованы для детекции(обнаружения) этого вещества или его очистки. Моноклональные антитела широко используются в биохимии, молекулярной биологии и медицине. В случае их использования в качестве лекарства его название оканчивается на -mab (от английского «monoclonal antibody»).
Гибридо́ма — гибридная клеточная линия, полученная в результате слияния клеток двух видов: способных к образованию антител B-лимфоцитов, полученных из селезёнки иммунизированного животного (чаще всего мыши), и раковых клеток миеломы. Слияние клеток производится с помощью нарушающего мембраны агента, такого, как полиэтиленгликоль или вирус Сёндай. Поскольку раковые клетки миеломы «бессмертны», то есть способны делиться большое количество раз, после слияния и соответствующей селекции гибридома, производящая моноклональные антитела против антигена может поддерживаться долгое время. В 1984 г. за открытие принципа получения моноклональных антител Мильштейн, Кёлер и Ерне получили Нобелевскую премию по физиологии и медицине.
Лабораторные животные (млекопитающие, например, мыши) подвергаются иммунизации, обычно, путем нескольких инъекций антигена в течение 1-2 месяцев. Затем из селезенки получают клетки, из которых выделяют лимфоциты. Их сливают с клетками миеломы, которую выбирают так, чтобы она сама по себе не производила антитела и не имела гена гипоксантин-гуанинфосфорибозилтрансферазы (ГГФТ), что делает ее чувствительной к селектирующему агенту НАТ (см.ниже). Слияние клеток производится с помощью нарушающего мембраны агента, такого, как полиэтиленгликоль или вирус Сёндай.
После слияния клетки в течение 10-14 дней поддерживают в среде, содержащей НАТ (гипоксантин, аминоптерин и тимидин). Аминоптерин блокирует синтез нуклеотидов, поэтому клетки материнской миеломы погибают. В отличие от миеломы, гибридные клетки и В-лимфоциты, имеющие ген ГГФТ, выживают за счет использования гипоксантина как источника пуринов, но продолжительность жизни обычных лимфоцитов ограничена, и через несколько недель в культуре остаются только клетки гибридомы. Поскольку не все из них образованы путем слияния миеломы с лимфоцитами, производящими нужные антитела, клетки делят на линии, которые поддерживают в отдельных ячейках 96-луночных плашек. Далее в среде над клетками определяют антитела и отбраковывают клеточные линии, не производящие антитела или недостаточно быстро размножающиеся. При достаточно хорошем разведении клеточной суспензии в одну лунку попадает не более одной гибридной клетки, но для гарантированного качества и стабильности культуры отобранные клеточные линии могут быть еще раз клонированы с тем, чтобы антитела производились потомками одной гибридной клетки, то есть были моноклональными[1].
Клонированную культуру гибридомы затем пересевают из лунки 96-луночной плашки в сосуды большей емкости для размножения, хранения в жидком азоте и получения большего количества антител для дальнейших исследований. Из культуральной среды можно получить от 1 до 60 µg/ml моноклональных антител. Большее количество можно получить путем введения клеточной суспензии в брюшную полость мышей, где гибридома размножается подобно раковым клеткам материнской миеломы, секретируя антитела во внутриполостную жидкость с образованием асцита (скопление жидкости в брюшной полости).
Т- і В-лімфоцити, їх субпопуляції, роль. Онтогенез В-лімфоцитів. CD-кластери диференціювання. Онтогенез Т-лімфоцитів, маркери, функції, етапи антигеннезалежного диференціювання та дозрівання.
К клеткам иммунной системы относят лимфоциты, макрофаги и другие антиген- представляющие клетки (А- клетки, от англ. accessory- вспомогательный), а также так называемую третью популяцию клеток (т.е. клеток, не имеющих основных поверхностных маркеров Т- и В- лимфоцитов, А- клеток).
По функциональным свойствам все иммунокомпетентные клетки разделяют на эффекторные и регуляторные. Взаимодействие клеток в иммунном ответе осуществляется с помощью гуморальных медиаторов - цитокинов. Основные клетки иммунной системы- Т- и В- лимфоциты.
Лимфоциты.
В организме лимфоциты постоянно рециркулируют между зонами скопления лимфоидной ткани. Расположение лимфоцитов в лимфоидных органах и их миграция по кровеносному и лимфатическому руслу строго упорядочены и связаны с функциями различных субпопуляций.
Лимфоциты имеют общую морфологическую характеристику, однако их функции, поверхностные CD ( от claster differenciation) маркеры, индивидуальное (клональное) происхождение, различны.
По наличию поверхностных CD маркеров лимфоциты разделяют на функционально различные популяции и субпопуляции, прежде всего на Т- (тимусзависимые, прошедшие первичную дифференцировку в тимусе) лимфоциты и В - (bursa- зависимые, прошедшие созревание в сумке Фабрициуса у птиц или его аналогах у млекопитающих) лимфоциты.
Т- лимфоциты.
Локализация.
Обычно локализуются в так называемых Т- зависимых зонах периферических лимфоидных органов (периартикулярно в белой пульпе селезенки и паракортикальных зонах лимфоузлов).
Функции.
Т- лимфоциты распознают процессированный и представленный на поверхности антиген- представляющих ( А ) клеток антиген. Они отвечают за клеточный иммунитет, иммунные реакции клеточного типа. Отдельные субпопуляции помогают В- лимфоцитам реагировать на Т- зависимые антигены выработкой антител.
Происхождение и созревание.
Родоначальницей всех клеток крови, в том числе лимфоцитов, является единая стволовая клетка костного мозга. Она генерирует два типа клеток- предшественников- лимфоидную стволовую клетку и предшественника клеток красной крови, от которой происходят и клетки- предшественники лейкоцитов и макрофагов.
Образование и созревание иммунокомпетентных клеток осуществляется в центральных органах иммунитета (для Т- лимфоцитов- в тимусе). Клетки- предшественники Т- лимфоцитов попадают в тимус, где пре- Т- клетки (тимоциты) созревают, пролиферируют и проходят дифференцировку на отдельные субклассы в результате взаимодействия с эпителиальными и дендритными клетками стромы и воздействия гормоноподобных полипептидных факторов, секретируемых эпителиальными клетками тимуса ( альфа1- тимозин, тимопоэтин, тимулин и др.).
При дифференцировке Т- лимфоциты приобретают определенный набор мембранных CD- маркеров. Т-клетки разделяют на субпопуляции в соответствии с их функцией и профилем CD- маркеров.
Т- лимфоциты распознают антигены с помощью двух типов мембранных гликопротеинов- Т- клеточных рецепторов (семейство Ig- подобных молекул) и CD3, нековалентно связанных между собой. Их рецепторы, в отличие от антител и рецепторов В- лимфоцитов, не распознают свободно циркулирующие антигены. Они распознают пептидные фрагменты, представляемые им А- клетками через комплекс чужеродных веществ с соответствующим белком главной системы гистосовместимости 1 и 2 класса.
Выделяют три основные группы Т- лимфоцитов- помощники (активаторы), эффекторы, регуляторы.
Первая группа- помощники (активаторы), в состав которых входят Т- хелперы1, Т- хелперы2, индукторы Т- хелперов, индукторы Т- супрессоров.
1. Т- хелперы1 несут рецепторы CD4 (как и Т- хелперы2) и CD44, отвечают за созревание Т- цитотоксических лимфоцитов (Т- киллеров), активируют Т- хелперы2 и цитотоксическую функцию макрофагов, секретируют ИЛ-2, ИЛ-3 и другие цитокины.
2. Т- хелперы2 имеют общий для хелперов CD4 и специфический CD28 рецепторы, обеспечивают пролиферацию и дифференцировку В- лимфоцитов в антителпродуцирующие (плазматические) клетки, синтез антител, тормозят функцию Т- хелперов1, секретируют ИЛ-4, ИЛ-5 и ИЛ-6.
3. Индукторы Т- хелперов несут CD29, отвечают за экспрессию антигенов HLA класса 2 на макрофагах и других А- клетках.
4. Индукторы Т- супрессоров несут CD45 специфический рецептор, отвечают за секрецию ИЛ-1 макрофагами, активацию дифференцировки предшественников Т- супрессоров.
Вторая группа- Т- эффекторы. В нее входит только одна субпопуляция.
5. Т- цитотоксические лимфоциты (Т- киллеры). Имеют специфический рецептор CD8, лизируют клетки- мишени, несущие чужеродные антигены или измененные аутоантигены (трансплантант, опухоль, вирус и др.). ЦТЛ распознают чужеродный эпитоп вирусного или опухолевого антигена в комплексе с молекулой класса 1 HLA в плазматической мембране клетки- мишени.
Третья группа- Т-клетки- регуляторы. Представлена двумя основными субпопуляциями.
6. Т- супрессоры имеют важное значение в регуляции иммунитета, обеспечивая подавление функций Т- хелперов 1 и 2, В- лимфоцитов. Имеют рецепторы CD11, CD8. Группа функционально разнородна. Их активация происходит в результате непосредственной стимуляции антигеном без существенного участия главной системы гистосовместимости.
7. Т- контсупрессоры. Не имеют CD4, CD8, имеют рецептор к особому лейкину. Способствуют подавлению функций Т- супрессоров, вырабатывают резистентность Т- хелперов к эффекту Т- супрессоров.
В- лимфоциты.
Существует несколько подтипов В- лимфоцитов. Основная функция В- клеток- эффекторное участие в гуморальных иммунных реакциях, дифференциация в результате антигенной стимуляции в плазматические клетки, продуцирующие антитела.
Образование В- клеток у плода происходит в печени, в дальнейшем- в костном мозге. Процесс созревания В- клеток осуществляется в две стадии- антиген - независимую и антиген - зависимую.
Антиген -независимая фаза. В- лимфоцит в процессе созревания проходит стадию пре- В- лимфоцита- активно пролиферирующей клетки, имеющей цитоплазменные H- цепи типа C мю (т.е. IgM). Следующая стадия- незрелый В- лимфоцит характеризуется появлением мембранного (рецепторного) IgM на поверхности. Конечная стадия антигеннезависимой дифференцировки- образование зрелого В- лимфоцита, который может иметь два мембранных рецептора с одинаковой антигенной специфичностью (изотипа) - IgM и IgD. Зрелые В- лимфоциты покидают костный мозг и заселяют селезенку, лимфоузлы и другие скопления лимфоидной ткани, где их развитие задерживается до встречи со “своим” антигеном, т.е. до осуществления антиген- зависимой дифференцировки.
Антиген- зависимая дифференцировка включает активацию, пролиферацию и дифференцировку В- клеток в плазматические клетки и В- клетки памяти. Активация осуществляется различными путями, что зависит от свойств антигенов и участия других клеток ( макрофагов, Т- хелперов). Большинство антигенов, индуцирующих синтез антител, для индукции иммунного ответа требуют участия Т- клеток- тимус- зависимые пнтигены. Тимус- независимые антигены (ЛПС, высокомолекулярные синтетические полимеры) способны стимулировать синтез антител без помощи Т- лимфоцитов.
В- лимфоцит с помощью своих иммуноглобулиновых рецепторов распознает и связывает антиген. Одновременно с В- клеткой антиген по представлению макрофага распознается Т- хелпером (Т- хелпером 2), который активируется и начинает синтезировать факторы роста и дифференцировки. Активированный этими факторами В- лимфоцит претерпевает ряд делений и одновременно дифференцируется в плазматические клетки, продуцирующие антитела.
Пути активации В- клеток и кооперации клеток в иммунном ответе на различные антигены и с участием популяций имеющих и не имеющих антиген Lyb5 популяций В- клеток отличаются. Активация В- лимфоцитов может осуществляться:
- Т- зависимым антигеном при участии белков МНС класса 2 Т- хелпера;
- Т- независимым антигеном, имеющим в составе митогенные компоненты;
- поликлональным активатором (ЛПС);
- анти- мю иммуноглобулинами;
- Т- независимым антигеном, не имеющим митогенного компонента.
Естественные киллеры, натуральные киллеры (англ. Natural killer cells (NK cells)) — большие гранулярные лимфоциты, обладающие цитотоксичностью против опухолевых клеток и клеток, зараженных вирусами. В настоящее время NK-клетки рассматривают как отдельный класс лимфоцитов. NK выполняют цитотоксические и цитокин-продуцирующие функции. NK являются одним из важнейших компонентов клеточного врождённого иммунитета. NK формируются в результате дифференцировки лимфобластов (общих предшественников всех лимфоцитов). Они не имеют Т-клеточных рецепторов, CD3 или поверхностных иммуноглобулинов, но обычно несут на своей поверхности маркеры CD16 и CD56 у людей или NK1.1/NK1.2 у некоторых линий мышей. Около 80% NK несут CD8.
Эти клетки были названными естественными киллерами, поскольку, по ранним представлениям, они не требовали активации для уничтожения клеток, не несущих маркеров главного комплекса гистосовместимости I типа.
Основная функция NK - уничтожение клеток организма, не несущих на своей поверхности MHC1 и таким образом недоступных для действия основного компонента противовирусного иммунитета - Т-киллеров. Уменьшение количества MHC1 на поверхности клетки может быть следствием трансформации клетки в раковую или действием вирусов, таких как папилломавирус и ВИЧ.
