Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ОТВЕТЫ ГОСЫ.doc
Скачиваний:
12
Добавлен:
08.09.2019
Размер:
4.55 Mб
Скачать
  1. Поділ клітини. Фази клітинного циклу. Хромосоми.

Клеточный цикл  — это период существования клетки от момента её образования путем деления материнской клетки до собственного деления или смерти.

Клеточный цикл эукариот состоит из двух периодов:

-Период клеточного роста, называемый «интерфаза», во время которого идет синтез ДНК и белков и осуществляется подготовка к делению клетки.

-Периода клеточного деления, называемый «фаза М» (от слова mitosis — митоз).

Интерфаза состоит из нескольких периодов:

-G1-фазы (от англ. gap — промежуток), или фазы начального роста, во время которой идет синтез мРНК, белков, других клеточных компонентов;

-S-фазы (от англ. synthesis — синтетическая), во время которой идет репликация ДНК клеточного ядра, также происходит удвоение центриолей (если они, конечно, есть).

-G2-фазы, во время которой идет подготовка к митозу.

У дифференцировавшихся клеток, которые более не делятся, в клеточном цикле может отсутствовать G1 фаза. Такие клетки находятся в фазе покоя G0.

Период клеточного деления (фаза М) включает две стадии:

-кариокинез (деление клеточного ядра);

-цитокинез (деление цитоплазмы).

В свою очередь, митоз делится на пять стадий, in vivo эти шесть стадий образуют динамическую последовательность.

Описание клеточного деления базируется на данных световой микроскопии в сочетании с микрокиносъемкой и на результатах световой и электронной микроскопии фиксированных и окрашенных клеток.

Различают два основных способа размножения клеток:

-митоз (кариокенез) — непрямое деление клеток, которое присуще в основном соматическим клеткам;

-мейоз или редукционное деление — характерно только для половых клеток.

амитоз - Амитоз (или прямое деление клетки), происходит в соматических клетках эукариот реже, чем митоз.

При амитозе морфологически сохраняется интерфазное состояние ядра, хорошо видны ядрышко и ядерная оболочка. Репликация ДНК отсутствует. Спирализация хроматина не происходит, хромосомы не выявляются. Клетка сохраняет свойственную ей функциональную активность, которая почти полностью исчезает при митозе. При амитозе делится только ядро, причем без образования веретена деления, поэтому наследственный материал распределяется случайным образом. Отсутствие цитокинеза приводит к образованию двуядерных клеток, которые в дальнейшем не способны вступать в нормальный митотический цикл. При повторных амитозах могут образовываться многоядерные клетки.

Возможен четвертый тип репродукции клетки — эндорепродукция, характеризуется увеличением объема клетки, увеличением количеством ДНК в хромосомах, увеличивается количество функциональных органелл. Клетка является гипертрофированной, но к увеличению числа клеток эндорепродукция не приводит, а лишь повышается функциональная активность клеток. Она наблюдается в клетках печенигепатоцитах, в эпителии мочевого пузыря.

Отмеченные выше два основных периода в жизненном цикле часто делящихся клеток (митоз и интерфаза) в свою очередь подразделяются на фазы или периоды. Митоз подразделяется на 4 фазы:

-профаза;

-метофаза;

-анафаза;

-телофаза.

В каждой фазе происходят определенные структурные преобразования.

Профаза характеризуется морфологическими изменениями ядра и цитоплазмы. В ядре происходит: конденсация хроматина и образование хромосом, состоящих из двух хроматид, исчезновение ядрышка, распад кариолеммы на отдельные пузырьки. В цитоплазме отмечается редупликация (удвоение) центриолей и расхождение их к противоположным полюсам клетки, формирование из микротрубочек веретена деления, репродукция зернистой эндоплазматической сети, а также уменьшение числа свободных и прикрепленных рибосом.

В метафазе происходит образование метафазной пластинки, или материнской звезды, неполное обособление сестринских хроматид друг от друга.

Анафаза характеризуется полным обособлением (расхождением) хроматид и образованием двух равноценных диплоидных наборов хромосом, расхождением хромосомных наборов к полюсам митотического веретена и расхождением самих полюсов.

Телофаза характеризуется деконденсацией хромосом каждого хромосомного набора, формированием из пузырьков ядерной оболочки, цитотомиейперетяжкой двуядерной клетки на две дочерние самостоятельные клетки, появлением ядрышка в ядрах дочерних клеток.

Интерфаза подразделяется на 3 периода:

-J1, или пресинтетический;

-S, или синтетический;

-J2, или постсинтетический.

Каждый период характеризуется прежде всего некоторыми функциональными особенностями. В J1 (пресинтетическом) периоде происходит:

усиленное формирование синтетического аппарата клетки — увеличение числа рибосом, а также количества различных видов РНК (информационной, рибосомальной, транспортных);

усиление синтеза белков, необходимых для роста клетки;

подготовка клетки к синтетическому периоду — синтез ферментов, необходимых для образования новых молекул ДНК.

Для S-периода характерно удвоение (редупликация) ДНК, что приводит к удвоению плоидности диплоидных ядер и является обязательным условием для последующего митотического деления клетки.

J2-период (постсинтетический, или премитотический) характеризуется усиленным синтезом информационной РНК, а также усиленным синтезом всех клеточных белков, но особенно белков-тубулинов, необходимых для последующего (в профазе митоза) формирования митотического веретена деления.

Описанные закономерности жизненного цикла характерны прежде всего для часто делящихся клеток. Однако клетки некоторых тканей (например, клетки печеночной ткани — гепатоциты), по выходе из митоза, вступают в так называемый J0-период, во время которого они выполняют свои многочисленные функции в течении многих лет, не вступая в S-период. Однако при определенных обстоятельствах (при поражении или удалении части печени) они вступают в нормальный клеточный цикл, то есть в S-период, синтезируют ДНК, а затем митотически делятся. Такие клетки относятся к редко делящимся клеткам, и их жизненный цикл подразделяется на митоз, J0-период, S-период, J2-период.

Большинство клеток нервной ткани, особенно нейроциты центральной нервной системы, по выходе из митоза еще в эмбриональном периоде, в дальнейшем не делятся. Жизненный цикл таких неделящихся клеток состоит из следующих периодов: митоза, роста, длительного функционирования, старения, смерти. Однако на протяжении длительного жизненного цикла такие клетки постоянно регенерируют по внутриклеточному типу: белковые и липидные молекулы, входящие в разнообразные структурные компоненты клеток, постепенно заменяются новыми, а следовательно такие клетки постепенно обновляются. Вместе с тем на протяжении жизненного цикла в цитоплазме неделящихся клеток постепенно накапливаются различные, прежде всего липидные включения, в частности липофусцин, который рассматривается как пигмент старения.

Хромосомы (от хромо... и сома) - органоиды клеточного ядра, совокупность которых определяет основные наследственные свойства клеток и организмов. Полный набор хромосом в клетке, характерный для данного организма, называется кариотипом. В любой клетке тела большинства животных и растений каждая хромосома представлена дважды: одна из них получена от отца, другая - от матери при слиянии ядер половых клеток в процессе оплодотворения. Такие хромосомы называются гомологичными, набор гомологичных хромосом - диплоидным. В хромосомном наборе клеток раздельнополых организмов присутствует пара (или несколько пар) половых хромосом, как правило, различающихся у разных полов по морфологическим признакам; остальные хромосомы называются аутосомами. У млекопитающих в половых хромосомах локализованы гены, определяющие пол организма.

Хромосомы (греч. chrōma цвет, окраска + sōma тело) — основные структурно-функциональные элементы клеточного ядра, содержащие гены. Название «хромосомы» обусловлено их способностью интенсивно окрашиваться основными красителями во время деления клетки. Каждый биологический вид характеризуется постоянством числа, размеров и других морфологических признаков X. Хромосомный набор половых и соматических клеток различен. В соматических клетках содержится двойной (диплоидный) набор Х. который можно разделить на пары гомологичных (идентичных) хромосом, сходных по величине и морфологии. Один из гомологов всегда отцовского, другой— материнского происхождения. В половых клетках (гаметах) эукариот (многоклеточных организмов, в т.ч. человека) все хромосомы набора представлены в единственном числе (гаплоидный хромосомный набор). В оплодотворенной яйцеклетке (зиготе) гаплоидные наборы мужских и женских гамет объединяются в одном ядре, восстанавливая двойной набор хромосом. У человека диплоидный хромосомный набор (кариотип) представлен 22 парами хромосом (аутосом) и одной парой половых хромосом (гоносом). Половые хромосомы различаются не только по составу содержащихся в них генов, но и по своей морфологии. Развитие из зиготы женской особи определяет пара половых хромосом, состоящая из двух Х-хромосом, то есть ХХ-пара, а мужской — пара, состоящая из X-хромосомы и У-хромосомы, — то есть ХУ-пара.

    Физико-химическая природа Х. зависит от сложности организации биологического вида. Так, у РНК-содержащих вирусов роль Х. выполняет однонитевая молекула РНК, у ДНК-содержащих вирусов и прокариот (бактерий, синезеленых водорослей) единственная Х. представляет собой свободную от структурных белков, замкнутую в кольцо молекулу ДНК, прикрепленную одним из своих участков к клеточной стенке. У эукариот главными молекулярными компонентами Х. служат ДНК, основные белки гистоны, кислые белки и РНК (содержание кислых белков и РНК в хромосоме варьирует на различных этапах клеточного цикла). ДНК в хромосоме существует в виде комплекса с гистонами, хотя отдельные участки молекулы ДНК могут быть свободными от этих белков.

    Комплексы ДНК с гистонами формируют элементарные структурные частицы Х. — нуклеосомы. При участии специфического гистона происходит уплотнение нуклеосомной нити, отдельные нуклеосомы тесно прилегают друг к другу, образуя фибриллу. Фибрилла подвергается дальнейшей пространственной укладке формируя нить второго порядка. Из нитей второго порядка образуются петли, которые являются структурами третьего порядка организации хромосом.

    Морфология хромосом различна в отдельных фазах клеточного цикла. В пресинтетической фазе Х. представлены одной нитью (хроматидой), в постсинтетической фазе состоят из двух хроматид. В интерфазе Х. занимают весь объем ядра, образуя так называемый хроматин. Плотность хроматина в разных участках ядра неодинакова. Рыхлые участки, слабо окрашивающиеся основными красителями, сменяются более плотными участками, окрашивающимися интенсивно. Первые представляют собой эухроматин: участки плотного хроматина содержат гетерохроматин или генетически инактивированные части Х.

    Индивидуально различимые тела хромосом формируются ко времени клеточного деления — митоза или мейоза. В профазе первого мейотического деления Х. претерпевают сложный цикл преобразований, связанных с конъюгацией гомологичных хромосом по длине с образованием так называемых бивалентов и генетической рекомбинацией между ними. В профазе митотического деления Х. выглядят как длинные переплетенные нити. Формирование «тела» Х. в метафазе клеточного деления происходит путем уплотнения структур третьего порядка неизвестным пока способом. Наименьшую длину и характерные морфологические особенности хромосом можно наблюдать именно на стадии метафазы. Поэтому всегда описание индивидуальных особенностей отдельных хромосом, как и всего хромосомного набора, соответствует их состоянию в метафазе митоза. Обычно на этой стадии Х. представляют собой продольно расщепленные образования, состоящие из двух сестринских хроматид. Обязательным элементом структуры Х. является так называемая первичная перетяжка, где обе хроматиды сужаются и сохраняются объединенными. В зависимости от локализации центромеры различают хромосомы метацентрические (центромеры расположена посередине), субметацентрические (центромера смещена по отношению к центру) и акроцентрические (центромера расположена близко к концу хромосомы). Концы хромосомы называют теломерами.

    В основе индивидуализации хромосом человека (и других организмов) лежит их способность окрашиваться на чередующиеся светлые и темные поперечные полосы по длине хромосомы при использовании специальных способов окраски. Число, положение и ширина таких полос специфичны для каждой X. Это обеспечивает надежную идентификацию всех Х. человека в нормальном хромосомном наборе и позволяет расшифровывать происхождение изменений в хромосомах при цитогенетическом обследовании пациентов с различной наследственной патологией.

    Сохранение постоянства числа хромосом в хромосомном наборе и структуры каждой отдельной Х. является непременным условием нормальною развития индивидуума в онтогенезе. Однако в течение жизни в организме могут возникать геномные и хромосомные мутации. Геномные мутации являются следствием нарушения механизма деления клеток и расхождения хромосом. Полиплоидия — увеличение числа гаплоидных наборов хромосом больше диплоидного; анэуплоидия (изменение числа отдельных Х.) возможна в результате потери одной из двух гомологичных Х. (моносомия) или, наоборот, появления лишних Х. — одной, двух и более (трисомия, тетрасомия и т.д.). В соматических клетках, отличающихся интенсивным функционированием, изменение плоидности может быть физиологическим (например, физиологическая полиплоидия в клетках печени). Однако анэуплоидия в соматических клетках нередко наблюдается при развитии опухолей. Среди детей с наследственными хромосомными болезнями преобладают так называемые анэуплоиды по отдельным аутосомам и половым хромосомам. Трисомия чаще затрагивает путосомы 8, 13, 18, 21 пар и Х-хромосомы. В результате трисомии хромосом 21 пары развивается Дауна болезнь. Примером моносомии может служить Шерешевского — Тернера синдром, обусловленный утратой одной из Х-хромосом. Анэуплоидия, возникшая в первых делениях зиготы, приводит к возникновению организма с различным числом Х. данной пары в разных клетках тканей (явление мозаицизма).

    Геномные и хромосомные мутации играют важную роль в эволюции биологических видов. Сравнительное изучение Х. и хромосомных наборов позволило остановить степень филогенетического родства человека и человекообразных обезьян, смоделировать набор хромосом у их общего предка и определить, какие структурные перестройки хромосом произошли в ходе эволюции человека.

  1. Основи ембріології. Статеві клітини: яйцеклітина, сперматозоїд.

Эмбриология — это наука изучающая закономерности развития зародыша. Медицинская эмбриология изучает закономерности развития зародыша человека, структурные, метаболические и функциональные особенности плацентарного барьера (система мать-плацента-плод), причины возникновения уродств и других отклонений от нормы, а также механизмы регуляции эмбриогенеза. Эмбриология изучает следующие периоды:

-эмбриональный (с момента оплодотворения и до рождения);

-ранний постнатальный.

Эмбриогенез является частью индивидуального развития, то есть онтогенеза. Он тесно связан с прогенезом, который делится на:

-гаметогенез;

-оплодотворение.

2. Прогенез

Зрелые половые клетки, в отличие от соматических содержат одиночный (гаплоидный) набор хромосом. Все хромосомы гаметы, за исключением одной половой, называются аутосомами. В мужских половых клетках у млекопитающих содержатся половые хромосомы либо X, либо Y, в женских половых клетках — только хромосома Х, Дифференцированные гаметы обладают невысоким уровнем метаболизма и неспособны к размножению.

Прогенез включает в себя сперматогенез и овогенез.

Сперматогенез — это развитие и формирование мужских половых клеток. Сперматогенез протекает в извитых канальцах семенников, и его средняя продолжительность от 68 до 75 суток. Сперматогенез у человека начинается с момента полового созревания и продолжается в течении всего активного полового периода в больших количествах.

Стадии сперматогенеза:

-размножение;

-роста;

-созревание-деление;

-формирование.

Начальной фазой сперматогенеза является размножение сперматогоний путем митоза, большая часть клеток продолжает делится, а меньшая часть вступает в стадию роста. В этот период клетки растут, накапливают питательные вещества, и потом превращаются в сперматоциты 1-го порядка. Следующая фаза созревание-деление, характеризуется двумя редукционными делениями, без интерфазы. В результате 1-го деления 1 сперматоцит 1-го порядка дает начало 2-м сперматоцитам 2-го порядка, а 2-ое деление-созревание приводит к появлению 4 сперматид. Фаза формирования происходит в присутствии тестостерона, происходит преобразование сперматид в сперматозоиды. Ядро сперматиды приобретает видоспецифическую форму, хроматин конденсируется. Комплекс Гольджи мигрирует к верхушке головки сперматозоида и образует чехлик и акросому. Центриоли идут к противоположному полюсу, проксимальная центриоль образует колечко в области шейки, а дистальная центриоль дает начало аксонемме — осевой нити сперматозоида. Митохондрии укладываются в промежуточной части хвостика. Микрофиламенты окружают аксонемму в главном отделе хвостика, терминальный отдел хвостика представляет собой ресничку. Акросома содержит сперматолизины (трипсин, гиалуронидаза).

Сперматозоиды — это мелкие, подвижные клетки, размером 30—60 мкм. В сперматозоиде различают головку и хвост. Головка сперматозоида имеет овоидную форму и включает в себя небольшое плотное ядро, окруженное тонким слоем цитоплазмы. Ядра сперматозоидов характеризуются высоким содержанием нуклеопротаминов и нуклеогистионов. Передняя половина ядра покрыта плоским мешочком, составляющим "чехлик" сперматозоида. В нем у переднего полюса располагается акросома. Чехлик и акросома являются производными комплекса Гольджи. Акросома содержит набор ферментов, среди которых важное место принадлежит гиалуронидазе и протеазам, способным растворять оболочки, покрывающие яйцеклетку. За головкой имеется кольцевидное сужение. Головка так же, как и хвостовой отдел, покрыта клеточной мембраной.

Хвостовой отдел сперматозоида состоит из связующих, промежуточных, главной и терминальной частей.

В связующей части или шейке располагаются центриоли — проксимальная и дистальная, от которой начинается осевая нить (аксонема). Промежуточная часть содержит 2 центральных и 9 пар периферических микротрубочек, окруженных расположенными по спирали митохондриями. Именно митохондрии обеспечивают энергией двигательную активность сперматозоидов, нарушение которой нередко связано с поражением процесса энергообразования в митохондриях. Главная часть по строению напоминает ресничку. Она окружена тонким фибриллярным влагалищем. Терминальная, или конечная часть содержит единичные сократительные филаменты.

Овогенез — это процесс образования и развития женских половых клеток. Он включает в себя 3 фазы:

размножения;

роста;

созревания.

Фаза размножения начинается в эмбриональном периоде и продолжается в течение 1-го года жизни девочки. К моменту рождения у девочки имеется около 2-х млн клеток. К периоду полового созревания остается около 40 тыс. половых клеток и в последующем 1 раз в 28—32 дня происходит созревание и выход одной яйцеклетки в маточную трубу — овуляция. Овуляция прекращается при наступлении беременности или менопаузы. Сущностью фазы размножения является митотическое деление овогоний.

Фаза роста, в конце 1-го года жизни девочки размножение овогоний останавливается и клетки яичника вступают в фазу малого роста, превращаясь в овоциты 1-го порядка. Наступает 1 блок роста, который снимается с наступлением полового созревания, то есть появлением женских половых гормонов. Далее овоциты 1-го порядка вступают в фазу большого роста.

Фаза созревания, как и во время сперматогенеза, включает в себя два деления, причем второе следует за первым без интеркинеза, что приводит к уменьшению (редукции) числа хромосом вдвое, и набор из становится гаплоидным. При первом делении созревания овоцит 1-го порядка делится, в результате чего образуются овоцит 2-го порядка и небольшое редукционное тельце. Овоцит 2-го порядка получает почти всю массу накопленного желтка и поэтому остается столь же крупным по объему, как и овоцит 1-го порядка. Редукционное же тельце представляет собой мелкую клетку с небольшим количеством цитоплазмы. При втором делении созревания в результате деления овоцита 2-го порядка образуются одна яйцеклетка и второе редукционное тельце. Первое редукционное тельце иногда тоже делится на две одинаковые мелкие клетки. В результате этих преобразований овоцита 1-го порядка образуются одна яйцеклетка и три редукционных тельца.

Яйцеклетки — это наиболее крупные клетки в организме человека, их размер составляет около 130—160 мкм. В цитоплазме яйцеклетки содержатся все органеллы (за исключением клеточного центра) и включения, основной из них — желток (лецитин). В яйцеклетке различают вегетативный полюс, в котором накапливается желток, и анимальный полюс куда смещается ядро. Желток — это включение, которое используется в яйцеклетке в качестве питательного вещества, кроме того под оволеммой содержатся кортикальные гранулы, которые являются производными комплекса Гольджи и образуют оболочку оплодотворения. В ядре яйцеклетки имеется гаплоидный набор хромосом, 22 являются соматическими и 1 (Х) половая. Снаружи яйцеклетка покрыта 3-я оболочками, у человека имеются следующие: оволемма, блестящая оболочка, и оболочка образуемая фолликулярными клетками — "лучистый венец". Блестящая оболочка представляет собой в химическом отношении гликозоаминогликаны и протеогликаны, которые являются продуктом жизнедеятельности яйцеклетки и фолликулярных клеток.

Классификация яйцеклеток:

I. По количеству желтка в цитоплазме:

-алецитальныебезжелтковые;

-олиголецитальныемаложелтковые;

-полилецитальныемногожелтковые.

II. По характеру расположения желтка в цитоплазме:

-изолецитальныес равномерным распределением желтка;

-центролецитальныежелток располагается в центре яйцеклетки;

-телолецитальныежелточные зерна скапливаются у одного полюса яйцеклетки.

Яйцеклетка человека относится к олиголецитальной и изолецитальной.

В эмбриональном периоде развития человека различают 3 этапа:

начальный1 неделя;

-зародышевый2—8 недели;

-плодный периодс 8 недели.

Эмбриональный период включает в себя следующие фазы:

оплодотворение (процесс заканчивается образованием зиготы);

дробление (процесс заканчивается образованием морулы);

гаструляция (процесс заканчивается образованием 3-х зародышевых листков и осевого зачатка органов);

гистогенез и органогенез, системогенез или образование систем органов.