Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ХФП - лекции -русск.doc
Скачиваний:
59
Добавлен:
18.08.2019
Размер:
637.44 Кб
Скачать

Методы исследования структуры полимеров

Исследование структуры макромолекулы может быть проведено следующими методами:

Химические методы предусматривают расчленение макромолекулы на низкомолекулярные соединения и последующую их идентификацию аналитическими способами. Чаще всего для расщепления используется озон.

Спектральные методы основаны на способности полимера взаимодействовать с полем электромагнитного излучения, избирательно поглощая энергию на определенном его участке. При этом изменяется энергетическое состояние такой макромолекулы в результате таких внутримолекулярных процессов, как переходы электронов, колебания атомных ядер, поступательное и вращательное движение макромолекулы в целом. Используются абсорбционная, УФ-, ВИ-, ИК-спектроскопии и ЯМР, спектроскопии внутреннего отражения.

6) Вискозиметрия.

7) Гельпроникающая хроматография.

Исследования надмолекулярной структуры может быть проведено следующими методами:

1) Световая спектроскопия.

2) Электронная микроскопия.

3) Рентгеноструктурный анализ

4) Электронография.

Гибкость полимеров

Гибкость цепи - это свойство, характерное только для полимеров.

Гибкость - это способность макромолекулы изменять свою конформацию в результате внутреннего теплового движения или вследствие действия внешних сил.

Различают термодинамическую и кинетическую гибкость.

Термодинамическая гибкость характеризует способность цепи изменять свою конформацию под действием теплового движения и зависит от разности энергий поворотных изомеров ΔU. Чем меньше ΔU, тем выше вероятность перехода макромолекулы из одной конформации в другую.

Термодинамическая гибкость определяется химическим строением повторяющегося звена и конформацией макромолекулы, которая также зависит от химического строения.

Полимеры диенового ряда:

- CH2-C(R)=CH-CH2- (R = H, CH3, Cl)

характеризуются большой гибкостью по сравнению с полимерами винилового ряда:

- СН2-СН- (R = H, CH3, Cl, CN, C6H5)

R

Это обусловлено тем, что разница энергий поворотных изомеров в диеновых полимерах меньше примерно в 100 раз. Такое различие связано с уменьшением обменных взаимодействий (притяжение-отталкивание) между группами СН2 при введении между ними группы с двойной связью, имеющей более низкий потенциальный барьер. Такая же картина наблюдается и для макромолекул, содержащих связи Si-O или C-O в цепи.

Природа заместителей оказывает незначительное влияние на термодинамическую гибкость.

Однако, если полярные заместители расположены близко друг к другу, их взаимодействие снижает гибкость. Самыми жесткими являются биополимеры, их устойчивые спиральные конформации образуются за счет водородных связей.

Кинетическая гибкость отражает скорость перехода макромолекулы в силовом поле из одной конформации с энергией U1 в другую с энергией U2, при этом необходимо преодолеть активационный барьер U0.

Кинетическая гибкость оценивается по величине кинетического сегмента.

Кинетический сегмент - это та часть макромолекулы, которая отзывается на внешнее воздействие как единое целое. Его величина изменяется в зависимости от температуры и скорости внешнего воздействия.

Полимеры, состоящие из звеньев, характеризующихся низкими значениями U0, проявляют высокую кинетическую гибкость. К ним относятся:

1) карбоцепные непредельные полимеры и полимеры винилового ряда, не содержащие функциональных групп - полибутадиен, полиизопрен, полиэтилен, полипропилен, полиизобутилен и др.;

2) карбоцепные полимеры и сополимеры с редким расположением полярных групп - полихлоропрен, сополимеры бутадиена со стиролом или нитрилом акриловой кислоты (содержание последних до 30-40%) и др.;

3) гетероцепные полимеры, полярные группы которых разделены неполярными - алифатические полиэфиры;

4) гетероцепные полимеры, содержащие группы C-O, Si-O, Si-Si, S-S и др.

Увеличение числа заместителей, их объема, полярности, асимметричности расположения снижает кинетическую гибкость.

-CH2-CH2- ; -CH2-CH-; -CH2-CH-

CH3 Cl

Если рядом с одинарной связью находится двойная, то кинетическая гибкость повышается. Полибутадиен и полиизопрен - гибкие полимеры, проявляющие гибкость при комнатной и более низкой температуре. Полиэтилен и ПВХ проявляют кинетическую гибкость только при повышенных температурах.

Во всех случаях рост температуры, увеличивая кинетическую энергию макромолекул, повышает вероятность преодоления активационного барьера и увеличивает кинетическую гибкость.

На кинетическую гибкость большое влияние оказывает скорость внешнего воздействия. Из-за большой длины макромолекулы и межмолекулярного взаимодействия для перехода из одной конформации в другую необходимо определенное время. Время перехода зависит от структуры макромолекулы: чем выше уровень взаимодействия, тем большее время требуется для изменения конформации.

Если время действия силы больше, чем время перехода из одной конформации в другую, кинетическая гибкость высока. При очень быстрой деформации даже термодинамически гибкая макромолекула ведет себя как жесткая.

Кинетическую гибкость можно оценить температурами стеклования Тс и текучести Тт.

Температура стеклования - это нижняя температурная граница проявления гибкости. При Т<Тс полимер ни при каких условиях не способен изменить свою конформацию, даже будучи потенциально гибким при высокой термодинамической гибкости. Поэтому температура стеклования Тс может служить качественной характеристикой гибкости полимера в конденсированном состоянии.

Температура текучести - это верхняя температурная граница изменения конформаций в результате заторможенного вращения вокруг одинарных связей без изменения центра тяжести макромолекулы. При Т>Тт наблюдается уже перемещение отдельных сегментов, которое обусловливает перемещение центра тяжести всей макромолекулы, т.е. ее течение. Чем выше ΔТ = Ттс, тем выше кинетическая гибкость полимера в конденсированном состоянии.

Температуры текучести и стеклования зависят от режима деформирования, в частности, от его скорости. С повышением скорости (частоты) механического воздействия возрастает как Тс, так и Тт, и температурная область проявления кинетической гибкости смещается в сторону более высоких температур.

При одинаковых условиях внешнего воздействия кинетическая гибкость полимеров не зависит от молекулярной массы макромолекулы, так как активационный барьер определяется только взаимодействием ближнего порядка. С ростом М повышается число сегментов.

Тс с ростом М сначала растет, а затем при определенном значении Мкр становится постоянной. Мкр соответствует М сегмента. Для термодинамически гибких полимеров Мкр составляет несколько тысяч: полибутадиен - 1000, ПВХ - 12000; полиизобутилен - 1000; полистирол - 40000. Поэтому для полимеров с молекулярной массой 100000-1 млн. Тс практически не зависит от М.

Для осуществления конформационных переходов необходимо преодолеть не только потенциальный барьер вращения U0, но и межмолекулярное взаимодействие. Его уровень определяется не только химическим строением макромолекулы, но и надмолекулярной структурой. Таким образом, кинетическая гибкость зависит от структуры полимера на молекулярном и надмолекулярном уровнях.

Макромолекулы в аморфном состоянии проявляют большую гибкость, чем в кристаллическом. Кристаллическое состояние вследствие плотной упаковки макромолекул и дальнего порядка в их расположении характеризуется чрезвычайно высоким уровнем межмолекулярного взаимодействия. Поэтому макромолекулы гибких полимеров (полибутадиен, полихлоропрен, полиэтилен и др.) в кристаллическом состоянии ведут себя как жесткие не способные изменять конформацию. В ориентированном состоянии гибкость полимеров также снижается, так как при ориентации происходит сближение цепей и увеличение плотности упаковки. Это повышает вероятность образования дополнительных узлов между цепями. Особенно это характерно для полимеров с функциональными группами. Пример: целлюлоза и ее производные. Эти полимеры характеризуются средней термодинамической гибкостью, а в ориентированном состоянии не изменить конформацию ни при каких условиях (Тс выше температуры разложения).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]