
- •Глава 1. История, предмет и задачи радиохимии
- •1.1 История радиохимии
- •1.2 Предмет и задачи радиохимии
- •1.3 Особенности радиохимии
- •1.4 Значение радиохимии
- •1.5 Радиохимия и экология
- •Глава 2. Физические основы радиохимии
- •2.1 Элементарные частицы
- •2.2 Протонно-нейтронный состав ядер
- •2.3 Свойства атомного ядра
- •2.3.1 Заряд, число нуклонов и масса ядра
- •2.3.2 Размеры ядер
- •2.3.3 Изотопы, изобары, изотоны
- •2.4 Энергия ядра
- •2.4.1 Энергия покоя
- •2.4.2 Энергия связи ядра
- •2.5 Устойчивость ядер
- •2.6 Ядерные силы
- •2.7 Ядерные модели
- •2.7.1 Капельная модель
- •2.7.2 Модель ферми-газа
- •2.7.3 Оболочечная модель
- •Вопросы
- •Глава 3. Радиоактивность
- •3.1 Законы радиоактивного распада
- •3.2 Абсолютная радиоактивность
- •3.3 Период полураспада
- •3.4 Радиоактивное равновесие
- •3.5 Радиоактивные семейства
- •Вопросы
- •Глава 4. Типы ядерных превращений
- •4.1 Альфа - распад
- •4.2 Бета - распад
- •4.3 Гамма - излучение ядер (изомерный переход)
- •4.4 Спонтанное деление
- •4.5 Испускание запаздывающего протона
- •4.6 Испускание запаздывающего нейтрона
- •Вопросы
- •Глава 5. Взаимодействие ядерного излучения с веществом
- •5.1 Взаимодействие альфа – частиц с веществом
- •5.2 Взаимодействие электронов с веществом
- •5.2.1 Ионизационные потери
- •5.2.2 Тормозное излучение (радиационные потери)
- •5.2.3 Излучение вавилова – черенкова
- •5.2.4 Электронно–позитронная аннигиляция
- •5.2.5 Пробеги электронов в веществе
- •5.3 Взаимодействие гамма – квантов с веществом
- •5.3.1 Фотоэффект (фотоэлектрическое поглощение)
- •5.3.2 Комптоновское рассеяние
- •5.3.3 Образование электрон-позитронной пары
- •5.3.4 Когерентное рассеяние
- •5.3.5 Ослабление гамма-излучения в веществе
- •5.4 Взаимодействие нейтронов с веществом
- •Вопросы
- •ГлАва 6. Радиационная химия
- •6.1 Количественные характеристики радиационно –химических превращений
- •6.2 Основные виды радиационно-химических превращений
- •6.3 Радиационная химия воды и водных растворов
- •6.3.1 Выходы продуктов радиолиза воды
- •6.4 Действие ионизирующих излучений на органические вещества
- •6.5 Радиолиз водных растворов днк ( дезоксирибонуклеиновая кислота)
- •6.6 Радиолиз водных растворов белков
- •6.7 Радиационная стойкость материалов
- •6.7.1 Радиационная стойкость некоторых материалов ядерной энергетики
- •6.8 Радиационно- химические технологии
- •Глава 7. Получение радионуклидов. Ядерные реакции
- •7.1 Ядерные реакции
- •7.2 Механизм ядерных реакций
- •2. Закон сохранения числа нуклонов.
- •7.3 Основные характеристики ядерных реакций
- •7.3.1 Выход ядерной реакции
- •7.3.2 Эффективное сечение ядерных реакций
- •7.4 Классификация ядерных реакций
- •7.5 Ядерные реакции и образование радионуклидов в природе
- •7.6 Получение радионуклидов по ядерным реакциям
- •7.6.1 Реакции, при которых заряд ядра z не меняется
- •7.6.4 Получение радионуклидов из продуктов распада урана и тория
- •Вопросы
- •Глава 8. Особенности поведения радиоактивных веществ в ультраразбавленных растворов
- •8.1 Коллоидообразование
- •8.2 Адсорбция
- •Вопросы
- •Глава 9. Методы выделения, разделения и концентрирования радиоактивных изотопов
- •9.1 Соосаждение
- •9.1.1 Количественная теория соосаждения
- •9.2 Экстракция
- •9.2.1 Виды экстракционных равновесий
- •9.2.2 Константа и коэффициент распределения
- •9.2.3 Достоинствами экстракционных методов являются
- •9.3 Хроматография
- •9.3.1 Ионообменная хроматография
- •9.3.2 Распределительная хроматография
- •9.3.3 Осадочная хроматография
- •9.4Электрохимические методы
- •9.4.1 Метод без применения внешней эдс (бестоковое осаждение, цементация)
- •9.4.2 Метод с применением внешней эдс ( электролиз)
- •9.4.3 Разделение изотопов методом электромиграции (электрофорез)
- •9.5 Метод сциларда – чалмерса (эффект отдачи)
- •9.6 Другие методы
- •Глава 10. Химия радиоактивных элементов
- •10.1 Технеций (экамарганец) 43Tc
- •10.2 Прометий –
- •10.3 Полоний
- •10.4 Астат (85At)
- •10.5 Радон (86Rn)
- •10.6 Франций ( 87Fr)
- •10.7 Радий (88Ra)
- •10.8 Актиноиды (89Ас, 90Th, 91Pa, 92u, 93Np, 94Pu, 95Am, 96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •10.8.1 Общие свойства актиноидов
- •10.8.2 Актиний (89Ас)
- •10.8.3 Торий (90th)
- •10.8.5 Уран (92u)
- •10.9 Трансурановые элементы ( 93Np, 94Pu, 95Am)
- •10.9.1 Общие свойства трансурановых элементов
- •10.9.2 Нептуний 93Np
- •10.9.3 Плутоний (94pu)
- •10.9.4 Америций (95am )
- •10.10 Трансамерициевые актиноиды (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •10.10.1 Общие свойства трансамерициевыех актиноидов
- •10.10.1 Кюрий(96Cm)
- •10.10.2 Берклий ( 97Bk)
- •10.10.3 Калифорний (98Cf)
- •10.10.4 Эйнштейний (99Es)
- •10.10. 5 Фе́рмий (100Fm)
- •10.10.6 Менделевий 101Md
- •10.11 Трансактиноидные элементы (104Rf, 105Db, 106Sb, 107Bh, 108Hs, 109Mt, 110Ds, 111Rg, 112-118)
- •10.11.1 Общие свойства трансактиноидных элементов
- •10.11.2 Резерфордий (104Rf до 1974 г. Курчатовий)
- •10.11.3 Дубний (нильсборий, ганий)
- •Глава 11. Химия радиоактивных элементов
- •11.1 Технеций (экамарганец) 43tc
- •11.2 Прометий –
- •11.3 Полоний
- •11.4 Астат
- •11.5 Радон (86Rn)
- •11.6 Франций ( 87Fr)
- •11.7 Радий (88Ra)
- •11.8 Актиний ( 89Ас) и актиноиды
- •11.9 Торий (90Th)
- •11.10 Протактиний 91Pa
- •11.11 Уран
- •11.12 Трансурановые элементы
- •11.13 Трансамерициевые актиноиды (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •11.14 Трансактиноиды
- •Глава 12. Химия радиоактивных элементов
- •12.1 Технеций (экамарганец) 43Tc
- •12.2 Прометий –
- •12.3 Полоний
- •12.4 Астат
- •12.5 Радон ( 86Rn)
- •12.6 Франций( 87Fr)
- •12.7 Радий (88Ra)
- •12.8 Актиний ( 89Ас) и актиноиды
- •12.8.1 Общие свойства актиноидов
- •Глава 13. Некоторые вопросы прикладной радиохимии
- •14.1 Получение ядерной энергии
- •Приложение
10.11.3 Дубний (нильсборий, ганий)
105 Db 260 Дубний Dubnium |
[Rn] 7s2 5f14 6d3 |
Открытию элемента с атомным номером 105 параллельно шли два больших научных коллектива: Лаборатория ядерных реакций Объединенного института ядерных исследований в Дубне и Радиационная лаборатория имени Эрнста Лоуренса в Беркли, США. В Дубне элемент сумели получить раньше и назвали нильсборием в честь Нильса Бора. Американские физики, получившие элемент №105 двумя месяцами позже, предложили для него свое название – ганий, в честь Отто Гана. Под этим названием он и фигурирует в американской литературе
Br(
О,
5n)
Db
.
Чуть позже были синтезированы элементы с атомными номерами 106-107.
106 Sg 263 Сиборгий Seaborgium |
[Rn] 7s2 5f14 6 |
Сечения активации этих реакций очень малы и резко уменьшаются с возрастанием атомного номера образующегося составного ядра. Более благоприятным с этой точки зрения является использование в качестве материала мишени ядер свинца и висмута, а качестве бомбардирующих частиц- ионов хрома и более тяжелых элементов. Использование такой комбинации позволило получить элементы с порядковыми номерами 106 и 107:
Период
полураспада 7.10-3
с.
107 Bh 262 Борий Bohrium |
[Rn] 7s2 5f14 6d5 |
108 Hs 265 Нассий Hassium |
[Rn] 7s2 5f14 6d6 |
Element 108, Hassium Hassium (symbol Hs) was discovered almost simultaneously in 1984 at the Joint Institute for Nuclear Research at Dubna and Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung) in Darmstadt, Germany. The temporary name for this element offered by IUPAC was Unniloctium (symbol Uno). The name Hahnium (symbol Ha), after Otto Hahn proposed in August 1994. However, finally the final name Hassium was ratified by the IUPAC Council meeting in Geneva in August 1997 and internationally accepted in the honor of the state Hessen (capital Wiesbaden) - German state where Institute for Heavy Ion Research is located.
109 Mt 266 Мейтнерий Meitnerium |
[Rn] 7s2 5f14 6d7 |
The element 109, Meitnerium (symbol Mt) was synthesized in 1982 by Gottfried Munzenberg, Peter Armbruster with coworkers at the Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung) in Darmstadt, Germany and named after Lise Meitner, the Austrian physicist. at the beginning, the name Unnilennium (symbol Une) was recommended, but in 1997, however, the name Meitnerium was accepted.
110 Ds 271 Дармштадтий Darmstadtium |
[Rn] 7s1 5f14 6d9 |
The date and time of element 110, Darmstadtium (symbol Dm) discovery is November 9, 1994 in 16:39 at the Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung, GSI) in Darmstadt, Germany. The only one atom was produced at the beginning.
The discovered isotope mass number was 269 (269 times heavier than hydrogen atom). It was produced by fusion of nickel and lead atoms accelerated in UNILAC accelerator of GSI. Only one atom of Darmstadtium was prepared during very long time after fusion of billions of nickel and lead atoms. IUPAC confirmed the discovery in 2001. The trivial name proposed by IUPAC was Uununnilium (symbol Uun). Nonofficial names for this element are eka-platinum, because of the belonging to the platinum group and policium, because of the Germany police number 110.
111 Rg 284 Ретгений Roentgenium |
[Rn] 7s1 5f14 6d10 |
The element 111 Roentgenium (symbol Rg) had been discovered 8th December 1994. The original name was Unununium (symbol Uuu). In accordance with the procedures established by IUPAC for the naming of elements, the name Roentgenium and the symbol Rg has been proposed for this noble metal analogous to copper, silver and gold in honour of famous scientists, Wilhelm Conrad Rontgen, the X-rays discoverer. The priority of the first preparing was granted by IUPAC to Sigurd Hofmann, et al at Gesellschaft fur Schwerionenforschung, Darmstadt, Germany.
112 Uub 288 Унунбиум Ununbium |
[Rn] 7s2 5f14 6d10 |
The element 112, Ununbium (symbol Uub), also known as eka-mercury was synthesized on 9th February 1996 at 22:37 at SHIP, Gesellschaft fur Schwerionenforschung in Darmstadt, Germany. The name Ununbium is a systematic IUPAC name for this element, which should be changed sooner or latter. In the first experiment only two nuclei of Ununbium-277 were synthesized by bombarding of the lead target by accelerated in a heavy ion accelerator zinc ions.
Subsequntly, Ununbium was synthesized in Joint Institute for Nuclear Research, Dubna, Russia. In 2006, in Dubna, another isotope Ununbium-282 was synthesized via series of б-decays.
113 Uut 193 Унунтриум Ununtrium |
[Rn] 7s2 5f14 6d10 7p1 |
The synthesis of chemical elements 113, Ununtrium and element 115, Ununpentium were reported on February 2004 by scientist from Flerov Laboratory of Joint Institute for Nuclear Research (Dubna) and Lawrence Livermote National Laboratory (Livermore, California). Japanese scientist from RIKEN (Japan) carried out another pathway for Ununtrium synthesis.
The name Ununtrium (symbol Uut)is a temporary IUPAC systematic chemical element name. This name will be changes in future. Because Japanese scientists were carried out some research of this element, they proposed names Japonium (symbol Jp) and Rikenium (symbol Rk).
114 Uuq 298 Унунквадиум Ununquadium |
[Rn] 7s2 5f14 6d10 7p2 |
The element 114, Ununquadium, Uuq, was discovered and reported December 1998 - January 1999 by scientists from the Joint Institute for Nuclear Research, Dubna, Russia with materials from scientists at the Lawrence Livermore National Laboratory, USA. In 2004 Ununquadium was synthesized by another pathway the Joint Institute for Nuclear Research, Dubna, Russia. The name Ununquadium (symbol Uuq) is a temporary IUPAC systematic chemical element name for element 114. This name will be changes in future. Another temporary name for this element is eka-lead, due to predicted similarities between Ununquadium and Lead.
Отправным моментом при получении еще более тяжелых элементов является гипотеза о существовании островов стабильности, предложенная еще в 1925 году немецким ученым Р. Свинне. Сущность этой гипотезы заключается в том, что элементы, ядра которых содержат магическое число нейтронов и протонов, соответствующее заполненным нейтронным или протонным оболочкам, должны обладать повышенной устойчивостью к альфа - распаду и спонтанному делению. Эта гипотеза инициировала многочисленные теоретические и экспериментальные исследования.
Cогласно расчетам теоретиков остров стабильности ожидается, в районе 114 элемента (магические числа Z=114 и N=184).
Все эти работы в широких масштабах проводились и проводятся в России (Дубна) и США (Беркли). Синтез дальнейших элементов осуществлялся путем бомбардировки урана 238, кюрия-248, эйнштейния-254 ядрами кальция-48. Синтез 114-го элемента был осуществлен в 1999 году в Дубне путем слияния ядер кальция-48 и плутония-244.
244Pu + 48Ca 288114 + 4 n
Новое, сверхтяжелое ядро охлаждается, испуская 3-4 нейтрона, а затем распадается путем испускания альфа-частиц до 110 элемента.
115 Uup 299 Ununpentium Унунпентиум |
[Rn] 7s2 5f14 6d10 7p3 |
Экависмут
The element 115, Ununpentium, Uup was synthesized in summer 2003 at the U400 cyclotron with the Dubna gas-filled recoil separator, at the Flerov Laboratory of Joint Institute for Nuclear Research, Dubna, Russia (Yu. Ts. Oganessian et al.) with subsequent publishing only in February 2004.
The name Ununpentium (symbol Uup) is a temporary IUPAC systematic chemical element name for element 115. This name will be changes in future. Another temporary name for this element is eka-bismuth.
116 Uuh 302 Унунгексий Ununhexium |
[Rn] 7s2 5f14 6d10 7p4 |
The element 116, Ununhexium, Uuh was synthesized in 2000, at the Flerov Laboratory of Joint Institute for Nuclear Research, Dubna, Russia (Yu. Ts. Oganessian et al.) with subsequent publishing only in February 2004.
The name Ununhexium (symbol Uuh) is a temporary IUPAC systematic chemical element name for element 116. This name will be changes in future. Another name used for the element 116 is eka-polonium. Для синтеза 116 элемента была проведена реакция слияния Cm-248 с Ca–48. В 2000 году три раза было зарегистрировано образование и распад 116-го элемента. Затем примерно через 0,05 с ядро элемента 116 распадается до 114 элемента и дальше следует цепочка из альфа-распадов до 110 элемента, который спонтанно распадается.
117 Uus 310 Унунсептий Ununseptium |
[Rn] 7s2 5f14 6d10 7p5 |
The element 117, Ununseptium, Uus has not been discovered yet. Currently this scheme of synthesis of the element 117 is under development at the Joint Institute for Nuclear Research,
The name Ununseptium (symbol Uus) is a temporary IUPAC systematic chemical element name for element 117. Another name used for the element 117 is eka-astatine.
Ununseptium Neighbours
118 Uuo 314 Ununoctium |
[Rn] 7s2 5f14 6d10 7p6 |
First synthesis of the element 118, Ununoctium, Uuo, was published in 1999 by Lawrence Berkeley National Laboratory in Calif, but further analysis of this results reveals some fraud in their studies. The first proven synthesis of Ununoctium was carried out at the Flerov Laboratory at the Joint Institute for Nuclear Research in Russia and the Lawrence Livermore National Laboratory in the USA. Only one atom in 2002 and two atoms of Ununoctium-294 in 2005 were synthesized, but results were published only on October 2006 (Yu. Ts. Oganessian, "Synthesis and decay properties of superheavy elements", Pure Appl. Chem., 2006, 78, 889-904), (Yu. Ts. Oganessian et al., "Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions", Phys. Rev. C, 2006, 74, 044602). The synthesis of Ununoctinum was verified by the analysis of independently created element 116, Ununhexium, which displays the same decay pattern as a decay products of Ununoctinum.
The name Ununoctium (symbol Uuo) is a temporary IUPAC systematic chemical element name for element 118. Another name used for the element 118 is eka-radon
Периоды полураспада синтезируемых спонтанно распадающихся новых элементов составляли несколько микросекунд. В основе методов химической идентификации при синтезе и поиске в природе сверхтяжелых элементов должно лежать прогнозирование химических свойств на основании ожидаемого их положения в периодической системе Менделеева. Например, предполагается, что элементы с порядковыми номерами 112-118 должны быть относительно более летучими, чем элементы с порядковыми номерами 80-86 от ртути до радона. Поэтому для отделения элементов 112-118 от актиноидов и поиска их среди продуктов ядерных реакций целесообразно использовать метод возгонки.
Каковы перспективы синтеза еще более тяжелых элементов? Физические принципы, ограничивающие рамки периодической таблицы,– это конкуренция между ядерными силами притяжения и электростатическими силами отталкивания. Граница периодической системы определяется процессами деления ядер, происходящими в том случае, когда электростатическое отталкивание протонов превышает ядерные силы притяжения. Казалось бы, что продолжение синтеза более тяжелых элементов становится бессмысленным, так как время их существования и выход слишком малы. В то же время обнаруженные периоды полураспада этих элементов оказались гораздо больше ожидаемых. Поэтому можно предположить, что при некотором сочетании протонов и нейтронов должны получатся устойчивые ядра с периодами полураспада много тысяч лет.
И так, получение изотопов, отсутствующих в природе - задача чисто техническая, так как теоретически вопрос ясен. Нужно взять мишень, облучить ее потоком бомбардирующих частиц с соответствующей энергией и быстро выделить нужный изотоп. Однако подобрать подходящую мишень, бомбардирующие частицы оказывается не так легко.
Экспериментальные исследования включают попытки искусственного получения короткоживущих изотопов сверхтяжелых элементов особенно в области 110-114
При этом в качестве мишени используются 94Pu, 95Am, 96Cm, 97Bк, 98Cf, а в качестве бомбардирующих частиц кальций-20, хром-26 и цинк-30.
Успехи в синтезе трансурановых элементов и синтез трансактиноидов поставили вопрос впрямую о верхней границе периодической системы.
Синтез нептуния и плутония позволил выделить в проблеме конца системы два аспекта: о естественной границе и о возможном пределе синтеза искусственных элементов. Можно предполагать, что на Земле последним природным элементом является плутоний.
Если рассматривать периодический закон в космическом масштабе то проблема конца системы становится неоднозначной и непосредственно смыкается со вторым аспектом- пределом устойчивости атомных ядер.
Достижения современной ядерной физики и химии позволяют более определенно судить и о возможности синтеза новых искусственных сверхтяжелых элементов. Эта проблема также неоднозначна.
106 Sg 263 Сиборгий Seaborgium |
[Rn] 7s2 5f14 6 |
Element 106 was discovered almost simultaneously by two different laboratories: in June 1974, an American research team led by Albert Ghiorso by Albert Ghiorso and Glenn T. Seaborg with coworkers at the Berkeley Laboratory of the University of California synthesized an isotope with mass number 263, and in September 1974, a Soviet team led by G. N. Flerov at the Joint Institute for Nuclear Research at Dubna reported producing an isotope with mass number 259. The preliminary systematic name given by IUPAC was Unnilhexium (symbol Unh). The name Seaborgium (symbol Sg) in honor the American chemist G.T. Seaborg was confirmed by IUPAC for the element 106.
Сечения активации этих реакций очень малы и резко уменьшаются с возрастанием атомного номера образующегося составного ядра. Более благоприятным с этой точки зрения является использование в качестве материала мишени ядер свинца и висмута, а качестве бомбардирующих частиц- ионов хрома и более тяжелых элементов. Использование такой комбинации позволило получить элементы с порядковыми номерами 106 и 107:
Период полураспада 7.10-3 с.
107 Bh 262 Борий Bohrium |
[Rn] 7s2 5f14 6d5 |
108 Hs 265 Нассий Hassium |
[Rn] 7s2 5f14 6d6 |
The first experiments were started in 1976 by a Soviet team led by Y. Oganessian at the Joint Institute for Nuclear Research at Dubna, who produced isotope Bohrium-261 (symbol Bh) by bombarding Bismuth-204 with heavy nuclei of Chromium-54. In this experiment the was performed by bombarding of the fast rotating cylinder coated by a thin layer of Bismuth-204 by a tangentially directed stream of Chromium-54 ions.
This element was confirmed in 1981 by at the Heavy Ion Research Laboratory at Darmstadt. The canonic name according IUPAC nomenclature is Unnilseptium (symbol Uns). German scientists have offered name Nielsbohrium (symbol Ns) and after some corrections the final name Bohrium(symbol Bh) was accepted.
Element 108, Hassium Hassium (symbol Hs) was discovered almost simultaneously in 1984 at the Joint Institute for Nuclear Research at Dubna and Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung) in Darmstadt, Germany. The temporary name for this element offered by IUPAC was Unniloctium (symbol Uno). The name Hahnium (symbol Ha), after Otto Hahn proposed in August 1994. However, finally the final name Hassium was ratified by the IUPAC Council meeting in Geneva in August 1997 and internationally accepted in the honor of the state Hessen (capital Wiesbaden) - German state where Institute for Heavy Ion Research is located.
109 Mt 266 Мейтнерий Meitnerium |
[Rn] 7s2 5f14 6d7 |
The element 109, Meitnerium (symbol Mt) was synthesized in 1982 by Gottfried Munzenberg, Peter Armbruster with coworkers at the Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung) in Darmstadt, Germany and named after Lise Meitner, the Austrian physicist. at the beginning, the name Unnilennium (symbol Une) was recommended, but in 1997, however, the name Meitnerium was accepted.
110 Ds 271 Дармштадтий Darmstadtium |
[Rn] 7s1 5f14 6d9 |
The date and time of element 110, Darmstadtium (symbol Dm) discovery is November 9, 1994 in 16:39 at the Institute for Heavy Ion Research (Gesellschaft fur Schwerionenforschung, GSI) in Darmstadt, Germany. The only one atom was produced at the beginning.
The discovered isotope mass number was 269 (269 times heavier than hydrogen atom). It was produced by fusion of nickel and lead atoms accelerated in UNILAC accelerator of GSI. Only one atom of Darmstadtium was prepared during very long time after fusion of billions of nickel and lead atoms. IUPAC confirmed the discovery in 2001. The trivial name proposed by IUPAC was Uununnilium (symbol Uun). Nonofficial names for this element are eka-platinum, because of the belonging to the platinum group and policium, because of the Germany police number 110.
111 Rg 284 Ретгений Roentgenium |
[Rn] 7s1 5f14 6d10 |
The element 111 Roentgenium (symbol Rg) had been discovered 8th December 1994. The original name was Unununium (symbol Uuu). In accordance with the procedures established by IUPAC for the naming of elements, the name Roentgenium and the symbol Rg has been proposed for this noble metal analogous to copper, silver and gold in honour of famous scientists, Wilhelm Conrad Rontgen, the X-rays discoverer. The priority of the first preparing was granted by IUPAC to Sigurd Hofmann, et al at Gesellschaft fur Schwerionenforschung, Darmstadt, Germany.
112 Uub 288 Унунбиум Ununbium |
[Rn] 7s2 5f14 6d10 |
The element 112, Ununbium (symbol Uub), also known as eka-mercury was synthesized on 9th February 1996 at 22:37 at SHIP, Gesellschaft fur Schwerionenforschung in Darmstadt, Germany. The name Ununbium is a systematic IUPAC name for this element, which should be changed sooner or latter. In the first experiment only two nuclei of Ununbium-277 were synthesized by bombarding of the lead target by accelerated in a heavy ion accelerator zinc ions.
Subsequntly, Ununbium was synthesized in Joint Institute for Nuclear Research, Dubna, Russia. In 2006, in Dubna, another isotope Ununbium-282 was synthesized via series of б-decays.
113 Uut 193 Унунтриум Ununtrium |
[Rn] 7s2 5f14 6d10 7p1 |
The synthesis of chemical elements 113, Ununtrium and element 115, Ununpentium were reported on February 2004 by scientist from Flerov Laboratory of Joint Institute for Nuclear Research (Dubna) and Lawrence Livermote National Laboratory (Livermore, California). Japanese scientist from RIKEN (Japan) carried out another pathway for Ununtrium synthesis.
The name Ununtrium (symbol Uut)is a temporary IUPAC systematic chemical element name. This name will be changes in future. Because Japanese scientists were carried out some research of this element, they proposed names Japonium (symbol Jp) and Rikenium (symbol Rk).
114 Uuq 298 Унунквадиум Ununquadium |
[Rn] 7s2 5f14 6d10 7p2 |
The element 114, Ununquadium, Uuq, was discovered and reported December 1998 - January 1999 by scientists from the Joint Institute for Nuclear Research, Dubna, Russia with materials from scientists at the Lawrence Livermore National Laboratory, USA. In 2004 Ununquadium was synthesized by another pathway the Joint Institute for Nuclear Research, Dubna, Russia. The name Ununquadium (symbol Uuq) is a temporary IUPAC systematic chemical element name for element 114. This name will be changes in future. Another temporary name for this element is eka-lead, due to predicted similarities between Ununquadium and Lead.
115 Uup 299 Ununpentium Унунпентиум |
[Rn] 7s2 5f14 6d10 7p3 |
The element 115, Ununpentium, Uup was synthesized in summer 2003 at the U400 cyclotron with the Dubna gas-filled recoil separator, at the Flerov Laboratory of Joint Institute for Nuclear Research, Dubna, Russia (Yu. Ts. Oganessian et al.) with subsequent publishing only in February 2004.
The name Ununpentium (symbol Uup) is a temporary IUPAC systematic chemical element name for element 115. This name will be changes in future. Another temporary name for this element is eka-bismuth.
116 Uuh 302 Унунгексий Ununhexium |
[Rn] 7s2 5f14 6d10 7p4 |
The element 116, Ununhexium, Uuh was synthesized in 2000, at the Flerov Laboratory of Joint Institute for Nuclear Research, Dubna, Russia (Yu. Ts. Oganessian et al.) with subsequent publishing only in February 2004.
The name Ununhexium (symbol Uuh) is a temporary IUPAC systematic chemical element name for element 116. This name will be changes in future. Another name used for the element 116 is eka-polonium.
117 Uus 310 Унунсептий Ununseptium |
[Rn] 7s2 5f14 6d10 7p5 |
The element 117, Ununseptium, Uus has not been discovered yet. Currently this scheme of synthesis of the element 117 is under development at the Joint Institute for Nuclear Research,
The name Ununseptium (symbol Uus) is a temporary IUPAC systematic chemical element name for element 117. Another name used for the element 117 is eka-astatine.
Ununseptium Neighbours
118 Uuo 314 Ununoctium |
[Rn] 7s2 5f14 6d10 7p6 |
First synthesis of the element 118, Ununoctium, Uuo, was published in 1999 by Lawrence Berkeley National Laboratory in Calif, but further analysis of this results reveals some fraud in their studies. The first proven synthesis of Ununoctium was carried out at the Flerov Laboratory at the Joint Institute for Nuclear Research in Russia and the Lawrence Livermore National Laboratory in the USA. Only one atom in 2002 and two atoms of Ununoctium-294 in 2005 were synthesized, but results were published only on October 2006 (Yu. Ts. Oganessian, "Synthesis and decay properties of superheavy elements", Pure Appl. Chem., 2006, 78, 889-904), (Yu. Ts. Oganessian et al., "Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm+48Ca fusion reactions", Phys. Rev. C, 2006, 74, 044602). The synthesis of Ununoctinum was verified by the analysis of independently created element 116, Ununhexium, which displays the same decay pattern as a decay products of Ununoctinum.
The name Ununoctium (symbol Uuo) is a temporary IUPAC systematic chemical element name for element 118. Another name used for the element 118 is eka-radon
Периоды полураспада синтезируемых спонтанно распадающихся новых элементов составляли несколько микросекунд. В основе методов химической идентификации при синтезе и поиске в природе сверхтяжелых элементов должно лежать прогнозирование химических свойств на основании ожидаемого их положения в периодической системе Менделеева. Например, предполагается, что элементы с порядковыми номерами 112-118 должны быть относительно более летучими, чем элементы с порядковыми номерами 80-86 от ртути до радона. Поэтому для отделения элементов 112-118 от актиноидов и поиска их среди продуктов ядерных реакций целесообразно использовать метод возгонки.
Каковы перспективы синтеза еще более тяжелых элементов? Физические принципы, ограничивающие рамки периодической таблицы,– это конкуренция между ядерными силами притяжения и электростатическими силами отталкивания. Граница периодической системы определяется процессами деления ядер, происходящими в том случае, когда электростатическое отталкивание протонов превышает ядерные силы притяжения. Казалось бы, что продолжение синтеза более тяжелых элементов становится бессмысленным, так как время их существования и выход слишком малы. В то же время обнаруженные периоды полураспада этих элементов оказались гораздо больше ожидаемых. Поэтому можно предположить, что при некотором сочетании протонов и нейтронов должны получатся устойчивые ядра с периодами полураспада много тысяч лет.
И так, получение изотопов, отсутствующих в природе - задача чисто техническая, так как теоретически вопрос ясен. Нужно взять мишень, облучить ее потоком бомбардирующих частиц с соответствующей энергией и быстро выделить нужный изотоп. Однако подобрать подходящую мишень, бомбардирующие частицы оказывается не так легко.
Экспериментальные исследования включают попытки искусственного получения короткоживущих изотопов сверхтяжелых элементов особенно в области 110-114
При этом в качестве мишени используются 94Pu, 95Am, 96Cm, 97Bк, 98Cf, а в качестве бомбардирующих частиц кальций-20, хром-26 и цинк-30.
Успехи в синтезе трансурановых элементов и синтез трансактиноидов поставили вопрос впрямую о верхней границе периодической системы.
Синтез нептуния и плутония позволил выделить в проблеме конца системы два аспекта: о естественной границе и о возможном пределе синтеза искусственных элементов. Можно предполагать, что на Земле последним природным элементом является плутоний.
Если рассматривать периодический закон в космическом масштабе то проблема конца системы становится неоднозначной и непосредственно смыкается со вторым аспектом- пределом устойчивости атомных ядер.
Достижения современной ядерной физики и химии позволяют более определенно судить и о возможности синтеза новых искусственных сверхтяжелых элементов. Эта проблема также неоднозначна. Планетарная модель атома, предложенная Резерфордом, сообразно которой вся масса атома сосредоточена в ядре, а оно окружено электронными оболочками справедлива даже для очень тяжелых элементов. Согласно теории такая конструкция может существовать вплоть до 176 элемента. Но, увы, столь тяжелых атомов до сих пор никто не находил– значительно раньше ядро становится не стабильным и самопроизвольно распадается на две части. Именно спонтанное деление определяет границы существования химических элементов, составляющих наш мир. Поэтому вопрос об их числе надо переадресовать из химии в ядерную физику.
Каковы перспективы синтеза еще более тяжелых элементов? Физические принципы, ограничивающие рамки периодической таблицы,– это конкуренция между ядерными силами притяжения и электростатическими силами отталкивания. Граница периодической системы определяется процессами деления ядер, происходящими в том случае, когда электростатическое отталкивание протонов превышает ядерные силы притяжения. Казалось бы, что продолжение синтеза более тяжелых элементов становится бессмысленным, так как время их существования и выход слишком малы. В то же время обнаруженные периоды полураспада этих элементов оказались гораздо больше ожидаемых. Поэтому можно предположить, что при некотором сочетании протонов и нейтронов должны получатся устойчивые ядра с периодами полураспада много тысяч лет.
И так, получение изотопов, отсутствующих в природе - задача чисто техническая, так как теоретически вопрос ясен. Нужно взять мишень, облучить ее потоком бомбардирующих частиц с соответствующей энергией и быстро выделить нужный изотоп. Однако подобрать подходящую мишень, бомбардирующие частицы оказывается не так легко
Для синтеза 116 элемента была проведена реакция слияния Cm-248 с Ca–48. В 2000 году три раза было зарегистрировано образование и распад 116-го элемента. Затем примерно через 0,05 с ядро элемента 116 распадается до 114 элемента и дальше следует цепочка из альфа-распадов до 110 элемента, который спонтанно распадается.
Периоды полураспада синтезируемых спонтанно распадающихся новых элементов составляли несколько микросекунд. В основе методов химической идентификации при синтезе и поиске в природе сверхтяжелых элементов должно лежать прогнозирование химических свойств на основании ожидаемого их положения в периодической системе Менделеева. Например, предполагается, что элементы с порядковыми номерами 112-118 должны быть относительно более летучими, чем элементы с порядковыми номерами 80-86 от ртути до радона. Поэтому для отделения элементов 112-118 от актиноидов и поиска их среди продуктов ядерных реакций целесообразно использовать метод возгонки.