
- •Глава 1. История, предмет и задачи радиохимии
- •1.1 История радиохимии
- •1.2 Предмет и задачи радиохимии
- •1.3 Особенности радиохимии
- •1.4 Значение радиохимии
- •1.5 Радиохимия и экология
- •Глава 2. Физические основы радиохимии
- •2.1 Элементарные частицы
- •2.2 Протонно-нейтронный состав ядер
- •2.3 Свойства атомного ядра
- •2.3.1 Заряд, число нуклонов и масса ядра
- •2.3.2 Размеры ядер
- •2.3.3 Изотопы, изобары, изотоны
- •2.4 Энергия ядра
- •2.4.1 Энергия покоя
- •2.4.2 Энергия связи ядра
- •2.5 Устойчивость ядер
- •2.6 Ядерные силы
- •2.7 Ядерные модели
- •2.7.1 Капельная модель
- •2.7.2 Модель ферми-газа
- •2.7.3 Оболочечная модель
- •Вопросы
- •Глава 3. Радиоактивность
- •3.1 Законы радиоактивного распада
- •3.2 Абсолютная радиоактивность
- •3.3 Период полураспада
- •3.4 Радиоактивное равновесие
- •3.5 Радиоактивные семейства
- •Вопросы
- •Глава 4. Типы ядерных превращений
- •4.1 Альфа - распад
- •4.2 Бета - распад
- •4.3 Гамма - излучение ядер (изомерный переход)
- •4.4 Спонтанное деление
- •4.5 Испускание запаздывающего протона
- •4.6 Испускание запаздывающего нейтрона
- •Вопросы
- •Глава 5. Взаимодействие ядерного излучения с веществом
- •5.1 Взаимодействие альфа – частиц с веществом
- •5.2 Взаимодействие электронов с веществом
- •5.2.1 Ионизационные потери
- •5.2.2 Тормозное излучение (радиационные потери)
- •5.2.3 Излучение вавилова – черенкова
- •5.2.4 Электронно–позитронная аннигиляция
- •5.2.5 Пробеги электронов в веществе
- •5.3 Взаимодействие гамма – квантов с веществом
- •5.3.1 Фотоэффект (фотоэлектрическое поглощение)
- •5.3.2 Комптоновское рассеяние
- •5.3.3 Образование электрон-позитронной пары
- •5.3.4 Когерентное рассеяние
- •5.3.5 Ослабление гамма-излучения в веществе
- •5.4 Взаимодействие нейтронов с веществом
- •Вопросы
- •ГлАва 6. Радиационная химия
- •6.1 Количественные характеристики радиационно –химических превращений
- •6.2 Основные виды радиационно-химических превращений
- •6.3 Радиационная химия воды и водных растворов
- •6.3.1 Выходы продуктов радиолиза воды
- •6.4 Действие ионизирующих излучений на органические вещества
- •6.5 Радиолиз водных растворов днк ( дезоксирибонуклеиновая кислота)
- •6.6 Радиолиз водных растворов белков
- •6.7 Радиационная стойкость материалов
- •6.7.1 Радиационная стойкость некоторых материалов ядерной энергетики
- •6.8 Радиационно- химические технологии
- •Глава 7. Получение радионуклидов. Ядерные реакции
- •7.1 Ядерные реакции
- •7.2 Механизм ядерных реакций
- •2. Закон сохранения числа нуклонов.
- •7.3 Основные характеристики ядерных реакций
- •7.3.1 Выход ядерной реакции
- •7.3.2 Эффективное сечение ядерных реакций
- •7.4 Классификация ядерных реакций
- •7.5 Ядерные реакции и образование радионуклидов в природе
- •7.6 Получение радионуклидов по ядерным реакциям
- •7.6.1 Реакции, при которых заряд ядра z не меняется
- •7.6.4 Получение радионуклидов из продуктов распада урана и тория
- •Вопросы
- •Глава 8. Особенности поведения радиоактивных веществ в ультраразбавленных растворов
- •8.1 Коллоидообразование
- •8.2 Адсорбция
- •Вопросы
- •Глава 9. Методы выделения, разделения и концентрирования радиоактивных изотопов
- •9.1 Соосаждение
- •9.1.1 Количественная теория соосаждения
- •9.2 Экстракция
- •9.2.1 Виды экстракционных равновесий
- •9.2.2 Константа и коэффициент распределения
- •9.2.3 Достоинствами экстракционных методов являются
- •9.3 Хроматография
- •9.3.1 Ионообменная хроматография
- •9.3.2 Распределительная хроматография
- •9.3.3 Осадочная хроматография
- •9.4Электрохимические методы
- •9.4.1 Метод без применения внешней эдс (бестоковое осаждение, цементация)
- •9.4.2 Метод с применением внешней эдс ( электролиз)
- •9.4.3 Разделение изотопов методом электромиграции (электрофорез)
- •9.5 Метод сциларда – чалмерса (эффект отдачи)
- •9.6 Другие методы
- •Глава 10. Химия радиоактивных элементов
- •10.1 Технеций (экамарганец) 43Tc
- •10.2 Прометий –
- •10.3 Полоний
- •10.4 Астат (85At)
- •10.5 Радон (86Rn)
- •10.6 Франций ( 87Fr)
- •10.7 Радий (88Ra)
- •10.8 Актиноиды (89Ас, 90Th, 91Pa, 92u, 93Np, 94Pu, 95Am, 96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •10.8.1 Общие свойства актиноидов
- •10.8.2 Актиний (89Ас)
- •10.8.3 Торий (90th)
- •10.8.5 Уран (92u)
- •10.9 Трансурановые элементы ( 93Np, 94Pu, 95Am)
- •10.9.1 Общие свойства трансурановых элементов
- •10.9.2 Нептуний 93Np
- •10.9.3 Плутоний (94pu)
- •10.9.4 Америций (95am )
- •10.10 Трансамерициевые актиноиды (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •10.10.1 Общие свойства трансамерициевыех актиноидов
- •10.10.1 Кюрий(96Cm)
- •10.10.2 Берклий ( 97Bk)
- •10.10.3 Калифорний (98Cf)
- •10.10.4 Эйнштейний (99Es)
- •10.10. 5 Фе́рмий (100Fm)
- •10.10.6 Менделевий 101Md
- •10.11 Трансактиноидные элементы (104Rf, 105Db, 106Sb, 107Bh, 108Hs, 109Mt, 110Ds, 111Rg, 112-118)
- •10.11.1 Общие свойства трансактиноидных элементов
- •10.11.2 Резерфордий (104Rf до 1974 г. Курчатовий)
- •10.11.3 Дубний (нильсборий, ганий)
- •Глава 11. Химия радиоактивных элементов
- •11.1 Технеций (экамарганец) 43tc
- •11.2 Прометий –
- •11.3 Полоний
- •11.4 Астат
- •11.5 Радон (86Rn)
- •11.6 Франций ( 87Fr)
- •11.7 Радий (88Ra)
- •11.8 Актиний ( 89Ас) и актиноиды
- •11.9 Торий (90Th)
- •11.10 Протактиний 91Pa
- •11.11 Уран
- •11.12 Трансурановые элементы
- •11.13 Трансамерициевые актиноиды (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •11.14 Трансактиноиды
- •Глава 12. Химия радиоактивных элементов
- •12.1 Технеций (экамарганец) 43Tc
- •12.2 Прометий –
- •12.3 Полоний
- •12.4 Астат
- •12.5 Радон ( 86Rn)
- •12.6 Франций( 87Fr)
- •12.7 Радий (88Ra)
- •12.8 Актиний ( 89Ас) и актиноиды
- •12.8.1 Общие свойства актиноидов
- •Глава 13. Некоторые вопросы прикладной радиохимии
- •14.1 Получение ядерной энергии
- •Приложение
10.9 Трансурановые элементы ( 93Np, 94Pu, 95Am)
10.9.1 Общие свойства трансурановых элементов
Трансурановые элементы, химические элементы, расположенные в периодической системе элементов Д. И. Менделеева за ураном, то есть с атомным номером Z 93. Из-за относительно высокой скорости радиоактивного распада трансурановых элементов в заметных количествах не сохранились в земной коре. Возраст Земли около 5109 лет, а период полураспада T1/2 наиболее долгоживущих изотопов трансурановых элементов меньше 107 лет. За время существования Земли трансурановых элементов, возникшие в процессе нуклеосинтеза, либо полностью распались, либо их количество резко уменьшилось (до 1012 раз). В природных минералах найдены микроколичества 244Pu — наиболее долгоживущего из трансурановых элементов (T1/2 ~ 8106 лет), который, возможно, сохранился на Земле с момента её формирования. В урановых рудах обнаружены следы 237Np (T1/2 ~ 2,14106 лет) и 239Pu (T1/2 ~ 2,4104 лет), которые образуются в результате ядерных реакций с участием ядер U.
Основным методом получения нептуния, плутония и америция является облучение урана, нептуния, плутония медленными нейтронами:
В свободном состоянии нептуний, плутоний, америций – серебристые металлы большой плотности, в порошкообразном состоянии они пирофорны.
Химия водных растворов этих элементов исследована с использованием микрохимии из-за их высокой массовой активности Все рассматриваемые элементы в степени окисления +3 и +4 находятся в водных растворах ( в отсутствие гидролиза и комплексообразования) в виде гидратированных ионов состава [ Me(H2O)x]n+.
Склонность к комплексообразованию актиноидов в степени окисления +3 изменяется в ряду:
Pu ≥ Am >Np>U
Все эти металлы сплавляются друг с другом в широком интервале концентраций и проявляют способность образовывать интерметаллические соединения.
Наиболее сложной проблемой является отделение трансурановых элементов от облучаемого элемента и друг от друга.
Решение этой задачи основано на том, что для каждого элемента рассматриваемой группы характерна своя устойчивая степень окисления: для урана +6, для нептуния +5, для плутония +4, для америция +3. Наиболее эффективными являются ионообменные и экстракционные методы. Меньшее значение для целей разделения и выделения этих элементов имеют осадительные методы.
Практическое использование элементов рассматриваемой группы определяется их ядерно-физическими характеристиками, а не химическими свойствами. Многие изотопы рассматриваемых элементов способны к делению под действием нейтронов и используются в качестве ядерного топлива.
Остановимся подробнее на рассмотрении отдельных элементов этой группы.
10.9.2 Нептуний 93Np
93 Np 237 Нептуний |
[Rn] 7s2 5f4 6d1 |
Первый трансурановый элемент нептуний 93Np открыт в 1940 г. Э. Мак - Миланом и П. Эйблсоном в лаборатории Г. Сиборга в Беркли (США) при облучении урана медленными нейтронами.
В
настоящее время получено 11 изотопов
нептуния с массовыми числами 231-241. Один
из изотопов нептуния,
,
является родоначальником радиоактивного
семейства 4n+1, обнаружен в природных
минералах урана. Отношение
/
в
урановой смоляной руде из Конго составляет
около 1.8∙10-12.
Основным
источником получения нептуния в настоящее
время служат ядерные реакции с участием
изотопов урана, протекающие под действием
нейтронов, дейтонов и б-частиц. Наиболее
важны в этом отношении реакции,
происходящие в ядерных реакторах,
предназначенных для производства
и энергетических реакторах на уране,
обогащенном
:
,
,
Скорость накопления нептуния в таких установках весьма высока и может составлять в реакторах для производства 0,1 % скорости образования плутония. Так как плутоний производится в очень больших количествах то, очевидно, что при этом образуются значительные количества .
Другие изотопы нептуния получают с помощью ускорителей частиц:
,
Нептуний - пятый член ряда актиноидов. Строение электронной оболочки атома нептуния отвечает схеме 5s2 5p65d10 5f4 6s26p6 6d17s2. При образовании химических соединений в реакциях принимают участие электроны 7s-, 6d- и 5f- уровней. Нептуний химически активен и сходен с ураном со степенями окисления от +3 до +7 (III-VII).
Нептуний серебристо-белый металл, ковкий, температура плавления 640 0С, легко растворяется в соляной кислоте. Чистый метал получают восстановлением NpF3 парами бария или лития при температуре около 1200 °C.
По своим химическим свойствам нептуний относится, как и уран к шестой группе. В своих соединениях нептуний проявляет степени окисления +3, + 4, +5, + 6, +7. В водных растворах нептуний может иметь такие же степени окисления.
Химия водных растворов нептуния исследована в основном с использованием миллиграммовых количеств из-за высокой массовой активности.
Разные ионы нептуния по-разному окрашивают растворы: Np3+ - в голубой или пурпурный цвет, Np4+ - в желто-зеленый, NpO2+- в голубовато-зеленый, NpO2+2 - в розовый или красный.
При отделении нептуния от продуктов деления из топливной смеси используется многообразие степеней окисления, проявляемых ураном, плутонием и нептунием. В зависимости от валентного состояния эти элементы ведут себя по- разному при соосаждении, комплексообразовании, экстракции растворителями и катионном и анионном обмене. Следовательно, при выделении любого из этих элементов возможно широкое применение разнообразных химических способов.
-
прекрасный стартовый материал для
пролучения
-
ценного топлива ядерных космических
батарей и других деликатных устройств
вроде стимулятора сердечной деятельности
или искусственного сердца. Нептуний-237
материал способный к цепному ядерному
делению. По опубликованным оценкам
критическая масса Np237
- 90 кг (диапазон оценок 75-105 кг). Высокое
значение критической массы (почти
удвоенное по отношению к обогащенному
урану-235) и высокая стоимость производства
делают его непривлекательным для
оружейного использования. Он обладает
очень низким уровнем спонтанного
деления, менее 0.05 делений/с-кг. Высокое
значение критической массы (почти
удвоенное по отношению к обогащенному
урану-235) и высокая стоимость производства
делают его непривлекательным для
оружейного использования. Определенное
количество Np-237 обычно образуется из
захвата нейтронов U-235. Типичный
энергетический реактор способен дать
около 0.4 кг Np-237 на тонну горючего. Ядерные
реакторы на быстрых нейтронах могут
произвести значительно большее
количество.