
- •Глава 1. История, предмет и задачи радиохимии
- •1.1 История радиохимии
- •1.2 Предмет и задачи радиохимии
- •1.3 Особенности радиохимии
- •1.4 Значение радиохимии
- •1.5 Радиохимия и экология
- •Глава 2. Физические основы радиохимии
- •2.1 Элементарные частицы
- •2.2 Протонно-нейтронный состав ядер
- •2.3 Свойства атомного ядра
- •2.3.1 Заряд, число нуклонов и масса ядра
- •2.3.2 Размеры ядер
- •2.3.3 Изотопы, изобары, изотоны
- •2.4 Энергия ядра
- •2.4.1 Энергия покоя
- •2.4.2 Энергия связи ядра
- •2.5 Устойчивость ядер
- •2.6 Ядерные силы
- •2.7 Ядерные модели
- •2.7.1 Капельная модель
- •2.7.2 Модель ферми-газа
- •2.7.3 Оболочечная модель
- •Вопросы
- •Глава 3. Радиоактивность
- •3.1 Законы радиоактивного распада
- •3.2 Абсолютная радиоактивность
- •3.3 Период полураспада
- •3.4 Радиоактивное равновесие
- •3.5 Радиоактивные семейства
- •Вопросы
- •Глава 4. Типы ядерных превращений
- •4.1 Альфа - распад
- •4.2 Бета - распад
- •4.3 Гамма - излучение ядер (изомерный переход)
- •4.4 Спонтанное деление
- •4.5 Испускание запаздывающего протона
- •4.6 Испускание запаздывающего нейтрона
- •Вопросы
- •Глава 5. Взаимодействие ядерного излучения с веществом
- •5.1 Взаимодействие альфа – частиц с веществом
- •5.2 Взаимодействие электронов с веществом
- •5.2.1 Ионизационные потери
- •5.2.2 Тормозное излучение (радиационные потери)
- •5.2.3 Излучение вавилова – черенкова
- •5.2.4 Электронно–позитронная аннигиляция
- •5.2.5 Пробеги электронов в веществе
- •5.3 Взаимодействие гамма – квантов с веществом
- •5.3.1 Фотоэффект (фотоэлектрическое поглощение)
- •5.3.2 Комптоновское рассеяние
- •5.3.3 Образование электрон-позитронной пары
- •5.3.4 Когерентное рассеяние
- •5.3.5 Ослабление гамма-излучения в веществе
- •5.4 Взаимодействие нейтронов с веществом
- •Вопросы
- •ГлАва 6. Радиационная химия
- •6.1 Количественные характеристики радиационно –химических превращений
- •6.2 Основные виды радиационно-химических превращений
- •6.3 Радиационная химия воды и водных растворов
- •6.3.1 Выходы продуктов радиолиза воды
- •6.4 Действие ионизирующих излучений на органические вещества
- •6.5 Радиолиз водных растворов днк ( дезоксирибонуклеиновая кислота)
- •6.6 Радиолиз водных растворов белков
- •6.7 Радиационная стойкость материалов
- •6.7.1 Радиационная стойкость некоторых материалов ядерной энергетики
- •6.8 Радиационно- химические технологии
- •Глава 7. Получение радионуклидов. Ядерные реакции
- •7.1 Ядерные реакции
- •7.2 Механизм ядерных реакций
- •2. Закон сохранения числа нуклонов.
- •7.3 Основные характеристики ядерных реакций
- •7.3.1 Выход ядерной реакции
- •7.3.2 Эффективное сечение ядерных реакций
- •7.4 Классификация ядерных реакций
- •7.5 Ядерные реакции и образование радионуклидов в природе
- •7.6 Получение радионуклидов по ядерным реакциям
- •7.6.1 Реакции, при которых заряд ядра z не меняется
- •7.6.4 Получение радионуклидов из продуктов распада урана и тория
- •Вопросы
- •Глава 8. Особенности поведения радиоактивных веществ в ультраразбавленных растворов
- •8.1 Коллоидообразование
- •8.2 Адсорбция
- •Вопросы
- •Глава 9. Методы выделения, разделения и концентрирования радиоактивных изотопов
- •9.1 Соосаждение
- •9.1.1 Количественная теория соосаждения
- •9.2 Экстракция
- •9.2.1 Виды экстракционных равновесий
- •9.2.2 Константа и коэффициент распределения
- •9.2.3 Достоинствами экстракционных методов являются
- •9.3 Хроматография
- •9.3.1 Ионообменная хроматография
- •9.3.2 Распределительная хроматография
- •9.3.3 Осадочная хроматография
- •9.4Электрохимические методы
- •9.4.1 Метод без применения внешней эдс (бестоковое осаждение, цементация)
- •9.4.2 Метод с применением внешней эдс ( электролиз)
- •9.4.3 Разделение изотопов методом электромиграции (электрофорез)
- •9.5 Метод сциларда – чалмерса (эффект отдачи)
- •9.6 Другие методы
- •Глава 10. Химия радиоактивных элементов
- •10.1 Технеций (экамарганец) 43Tc
- •10.2 Прометий –
- •10.3 Полоний
- •10.4 Астат (85At)
- •10.5 Радон (86Rn)
- •10.6 Франций ( 87Fr)
- •10.7 Радий (88Ra)
- •10.8 Актиноиды (89Ас, 90Th, 91Pa, 92u, 93Np, 94Pu, 95Am, 96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •10.8.1 Общие свойства актиноидов
- •10.8.2 Актиний (89Ас)
- •10.8.3 Торий (90th)
- •10.8.5 Уран (92u)
- •10.9 Трансурановые элементы ( 93Np, 94Pu, 95Am)
- •10.9.1 Общие свойства трансурановых элементов
- •10.9.2 Нептуний 93Np
- •10.9.3 Плутоний (94pu)
- •10.9.4 Америций (95am )
- •10.10 Трансамерициевые актиноиды (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •10.10.1 Общие свойства трансамерициевыех актиноидов
- •10.10.1 Кюрий(96Cm)
- •10.10.2 Берклий ( 97Bk)
- •10.10.3 Калифорний (98Cf)
- •10.10.4 Эйнштейний (99Es)
- •10.10. 5 Фе́рмий (100Fm)
- •10.10.6 Менделевий 101Md
- •10.11 Трансактиноидные элементы (104Rf, 105Db, 106Sb, 107Bh, 108Hs, 109Mt, 110Ds, 111Rg, 112-118)
- •10.11.1 Общие свойства трансактиноидных элементов
- •10.11.2 Резерфордий (104Rf до 1974 г. Курчатовий)
- •10.11.3 Дубний (нильсборий, ганий)
- •Глава 11. Химия радиоактивных элементов
- •11.1 Технеций (экамарганец) 43tc
- •11.2 Прометий –
- •11.3 Полоний
- •11.4 Астат
- •11.5 Радон (86Rn)
- •11.6 Франций ( 87Fr)
- •11.7 Радий (88Ra)
- •11.8 Актиний ( 89Ас) и актиноиды
- •11.9 Торий (90Th)
- •11.10 Протактиний 91Pa
- •11.11 Уран
- •11.12 Трансурановые элементы
- •11.13 Трансамерициевые актиноиды (96Cm, 97Bк, 98Cf, 99Es, 100Fm, 101Md, 102No, 103Lr)
- •11.14 Трансактиноиды
- •Глава 12. Химия радиоактивных элементов
- •12.1 Технеций (экамарганец) 43Tc
- •12.2 Прометий –
- •12.3 Полоний
- •12.4 Астат
- •12.5 Радон ( 86Rn)
- •12.6 Франций( 87Fr)
- •12.7 Радий (88Ra)
- •12.8 Актиний ( 89Ас) и актиноиды
- •12.8.1 Общие свойства актиноидов
- •Глава 13. Некоторые вопросы прикладной радиохимии
- •14.1 Получение ядерной энергии
- •Приложение
10.8.3 Торий (90th)
Элемент № 90 был открыт обычным химическим методом в 1828 г. Яном Берцелиусом и назван торием в честь древнескандинавского божества Тора. Радиоактивность тория была обнаружена в 1898 г. М. Кюри и одновременно с ней независимо немецким ученым Г. Шмидтом. Именно радиоактивность - основная причина нынешнего интереса к элементу № 90. Природный элемент практически представляет собой изотоп 232Th. Торий-232 является родоначальником довольно большого семейства. Период полураспада тория-232 равен 1,39·1010лет.
Электронная конфигурация атома тория 6d2 7s2.
Основными источниками тория являются торийсодержащие минералы (монацит, ортит). Методы выделения тория предусматривают отделение его от сопутствующих редкоземельных элементов. В технологии для этой цели используется, в основном, экстракция тория ТБФ(трибутилфосфатом) после его отделения от основной массы редкоземельных элементов дробным осаждение менее растворимого сульфата тория.
В периодической системе 232Th расположен в четвертой группе. Торий - серебристо-белый блестящий металл, стойкий к окислению в чистом виде, но обычно медленно тускнеющий до темного цвета с течением времени. Чистый торий - мягкий, очень гибкий и ковкий, с ним можно работать непосредственно (холодный прокат, горячая штамповка и т.п.), однако его протяжка затруднительна из-за низкого предела прочности на разрыв.
Порошок металлического тория пирофорен поэтому обращаться с ним нужно с осторожностью. При нагреве в воздухе он загорается и горит ярким белым светом. Это свойство тория было использовано в начале прошлого века для изготовления ториевых ламп.
Рис. Ториевая лампа
Торий медленно разрушается водой, но плохо растворяется в основных кислотах, за исключением соляной. Он малорастворим в серной и азотной кислотах.
При сильном нагреве торий взаимодействует с галогенами, серой и азотом.. Он очень легко окисляется, поэтому его хранят под слоем керосина.
Химические свойства тория изучены методами классической химии. Торий способен проявлять степени окисления +4, +3, +2, наиболее устойчивой является +4. Ион Th+4 обладает большим зарядом, относительно малым радиусом и большим числом At At рироде.
Протактиний почти одновременно обнаружили О. Ган и Л. Мейтнер в Германии и Ф. Содди и Дж. Кренстон в Англии.
Рис. Лиза Мейтнер Рис. Фредерик Содди
Новый радиоактивный элемент был обнаружен при переработке минералов урана точно так же, как полоний, радий, актиний. Это был самый долгоживущий изотоп элемента № 91– протактиний-231 с периодом полураспада 35000 лет. Протактиний образуется в результате распада урана-235 по схеме:
U
Ac
В природе он находится в таких же количествах, как и радий ( 340 мг на 1 т урана). Поэтому протактиний принадлежит к числу наименее распространенных элементов на Земле. Кроме протактиния-231 в природе существует протактиний-234. Он также продукт распада урана, но период его полураспада очень мал.
Кроме
этих двух изотопов протактиния, сейчас
известны еще 17 изотопов с массовыми
числами от 216 до 238 и периодами полураспада
от долей секунды до нескольких дней.
Изотоп
(Т ½=
27 дней) обычно получают при нейтронном
облучении тория по схеме:
Протактиний –самый неактиноидный актиноид. По своим свойствам он сходен с Nb, Ta, Zr, Hf, Ti. Это блестящий металл светло-серого цвета, покрытый на воздухе тонкой пленкой монооксида. По твердости протактиний близок к урану. Интересным свойством протактиния является его сверхпроводимость при 2˚ К. Электроння конфигурация атома протактиния 5f2 6d1 7s2.
Металлический
протактиний может быть получен термическим
разложением его галогенидов на
вольфрамовой нити при высокой температуре
и давлении 10-3
– 10-4
Па. Изучение химии протактиния
осуществлялось методами
классической химии
с использованием долгоживущего изотопа
.
Протактиний легко реагирует с водородом
при 250-300оС,
образуя гидрид PaH3.
С иодом образует летучие иодиды сложного
состава. Степени окисления протактиния
+5, +4,+3,+2,
из которых наиболее устойчивой является
+5. Протактиний в степени окисления +5 в
большей мере является аналогом тантала
и ниобия,
чем соседних актиноидов (урана, нептуния,
плутония). Для протактиния (+5) в водных
растворах характерна очень большая
склонность
к гидролизу и полимеризации с образованием
коллоидных
форм. В ионной
и молекулярной формах
(+5)
существует только в концентрированных
растворах сильных минеральных кислот
или в растворах, содержащих комплексующие
агенты.
Основными методами выделения протактиния являются соосаждение, экстракция и хроматография. Наилучшими носителями являются фосфат циркония и гидроксид марганца (1У).
применяется
как источник получения
и
по
реакции (n,г)
(Т
½ =73.6
ч) - используется как автономный изотопный
источник тока,
используется в качестве ядерного
топлива.
Протактиний и его соединения чрезвычайно радиоактивны и радиотоксичны. Сравнительное количество протактиния в 250 миллионов раз токсичнее такого же количества синильной кислоты.
231Pa в организме человека склонен накапливаться в почках и костях. ПДК для 231Pa в воздухе рабочих помещений 5,6·10−4 Бк/м³. Максимальное безопасное количество протактиния при попадании в организм человека составляет 0.03 мккюри, что соответствует 0.5 мкг.