
- •Теория статистики Пособие для студентов, обучающихся по дистанционной системе Введение
- •Тема 1. Предмет и метод статистики
- •Определение статистики
- •1.2. Статистическая закономерность, статистическая совокупность, единица совокупности
- •1.3. Признаки и их классификация, статистический показатель
- •Классификация признаков в статистике
- •1.4. Метод статистики
- •Контрольные вопросы к теме «Предмет и метод статистики»
- •Контрольные задания к теме «Предмет и метод статистики»
- •Тема 2. Статистическое наблюдение
- •Понятие статистического наблюдения
- •2.2. Виды статистического наблюдения
- •2.3. Способы наблюдения
- •2.4. Программно-методологические вопросы статистического наблюдения
- •2.5. Ошибки статистического наблюдения
- •Контрольные вопросы к теме «Статистическое наблюдение»
- •Тема 3. Сводка и группировка статистических данных
- •3.1. Содержание и виды статистической сводки
- •3.2. Метод группировки. Виды группировок
- •Административно-территориальное деление Российской Федерации (на 1 января 2007 г.)
- •Распределение населения рф по величине среднедушевых денежных доходов в 2004-2007гг. ( в процентах в итогу)
- •Группировка процентных ставок по объемам выданных кредитов банка n (условные данные)
- •Внешнеторговый оборот России в 2006 г.
- •Сводка и группировка статистических данных
- •3.3. Ряды распределения: виды, правила построения и графическое отображение
- •3.4. Статистические таблицы и графики
- •Контрольные вопросы к теме «Сводка и группировка»
- •Тема 4. Абсолютные и относительные статистические показатели
- •4.1. Сущность, значение и классификация статистических показателей
- •4.2. Абсолютные величины
- •4.3. Относительные величины
- •Производство легковых автомобилей в рф в 2000 - 2003гг. (тыс.Шт)
- •Структура валового внутреннего продукта рф в 1 квартале 2003 г.
- •Контрольные вопросы к теме «Абсолютные и относительные статистические показатели»
- •Контрольные задания к главе 4
- •Рассчитайте относительные показатели динамики, интенсивности, сравнения и сделайте выводы о естественном движении населения в области.
- •Тема 5. Средние показатели
- •5.1. Средняя, её сущность и определение
- •5.2. Виды и формы средних величин
- •5.3. Средняя арифметическая
- •Сделки по акциям эмитента "х" за торговую сессию
- •Себестоимость продукции "z"
- •Распределение сотрудников предприятия по возрасту
- •5.4. Средняя гармоническая.
- •Решение
- •Решение
- •Информация о вкладах в банке для расчета средних значений
- •Решение
- •5.5. Средняя геометрическая
- •Контрольные вопросы по теме «Средние показатели»
- •Контрольные задания по теме «Средние показатели»
- •Доходы банков в отчетном году характеризуется следующими показателями:
- •Тема 6. Показатели вариации
- •Относительные показатели вариации
- •6.3. Меры вариации для сгруппированных данных. Правило сложения дисперсий
- •Общая дисперсия равна сумме межгрупповой дисперсии и средней из внутригрупповых дисперсий:
- •Группировка населения отдельных областей России по среднему размеру ежемесячных денежных льгот пенсионеров
- •6.3. Вариация альтернативного признака
- •Контрольные вопросы к теме «Показатели вариации»
- •Контрольные задания к теме «Показатели вариации»
- •Тема 7. Виды и формы связей, различаемые в статистике
- •6.1. Виды и формы связей, различаемые в статистике
- •6.2. Измерение тесноты связи в случае корреляционной зависимости.
- •6.3. Оценка достоверности коэффициента корреляции
- •6.4. Ранговая корреляция
- •6.5. Корреляция альтернативных признаков
- •Решение
- •Решение
- •5. Коэффициент взаимной сопряженности к.Пирсона
- •Контрольные задания по теме «Статистическое изучение связи между явлениями»
- •Тема 8. Статистическое изучение динамики социально-экономических процессов
- •8.1. Основные понятия и показатели
- •8.2. Виды рядов динамики
- •8.3. Показатели изменения уровней ряда динамики
- •8.4. Приемы преобразования временных рядов
- •Контрольные вопросы к теме «Анализ динамики социально-экономических процессов»
- •Контрольные задания к теме «Анализ динамики социально-экономических процессов»
- •Тема 9. Индексный метод
- •Индексы, их сущность. Индивидуальные индексы и их взаимосвязи
- •Агрегатные индексы. Проблема соизмерения индексируемых величин
- •9.3. Средний арифметический и средний гармонический индексы, тождественные агрегатному
- •Индексный метод анализа динамики среднего уровня: индексы переменного, постоянного состава и структурных сдвигов
- •Данные о ценах и объемах реализации товара "X" в двух регионах
- •Ряды индексов с постоянной и переменной базой сравнения (цепные и базисные), с постоянными и переменными весами
- •Ряды индексов с постоянными и переменными весами
- •Взаимосвязи индексов. Индексный метод выявления роли отдельных факторов динамики сложных явлений
- •Контрольные вопросы к теме «Индексный метод»
- •Контрольные задания по теме «Индексный метод»
Информация о вкладах в банке для расчета средних значений
|
Октябрь |
Ноябрь |
||
Вид вклада |
Число вкладов, тыс.,
f |
Средний размер вклада, тыс. руб. х |
Сумма вкладов, млн. руб.
М |
Средний размер вклада, тыс. руб. х |
До востребования |
10 |
35 |
4,07 |
37 |
Срочный |
8 |
40 |
3,87 |
43 |
В октябре известен средний размер вкладов каждого вида х и количество вкладов f. Следовательно, для расчета среднего размера вклада по двум видам применяем формулу средней арифметической взвешенной, тыс. руб.:
В ноябре известен средний размер вкладов каждого вида, а количество вкладов не известно, но зато имеются данные об общих суммах вкладов.
Путем деления сумм вкладов М каждого вида на их средний размер вклада х можно определить веса – число вкладов по их видам f, а затем определить средний размер вклада по двум видам по формуле средней арифметической.
Однако, если в расчете использовать среднюю гармоническую, то отпадает необходимость предварительного расчета весов – размеров вкладов по каждому виду, поскольку эта операция заложена в саму формулу. Средняя гармоническая взвешенная применяется, когда статистическая информация не содержит частот f по отдельным единицам совокупности, а представлена как произведение xf. Чтобы исчислить среднюю, обозначим xf=М, откуда f=w/x. Преобразуем формулу средней арифметической так, чтобы по имеющимся данным x и М можно было исчислить среднюю.
В формулу средней арифметической взвешенной вместо xf подставим М, вместо f – отношение М/x и получим формулу средней гармонической взвешенной:
Итак, средний размер вклада в ноябре по двум их видам находим по формуле средней гармонической взвешенной, тыс. руб.:
Пример 5. В результате проверки двух партий муки потребителям установлено, что в первой партии муки высшего сорта было 3942 кг., что составляет 70,4% общего веса муки этой партии. Во второй партии муки высшего сорта было 6520 кг., что составляет 78,6% общего веса муки этой партии. Определите процент муки высшего сорта в среднем по первой и второй партиям вместе.
Решение
Средний процент муки высшего сорта по двум партиям определяем по формуле средней гармонической взвешенной:
5.5. Средняя геометрическая
Пример 1. Предположим, Вы внесли деньги в банк на срочный депозит, процент по которому ежегодно изменяется в зависимости от ставки рефинансирования ЦБ. После каждого года сумма, равная процентному приросту, добавляется к сумме счета. Например, первоначальная сумма вклада составила 100 денежных единиц. За первый Вы получили 5% дохода по вкладу, за второй 7%, за третий 9% и за 4-й – 10%. Каков средний уровень дохода по вкладу за 4 года?
Можно сложить
вычислить среднюю арифметическую
величину дохода:
.
Верно ли это?
Ведем следующие
условные обозначения: P
– первоначальная сумма вклада,
- доход по вкладу в первый, второй, третий
и четвертый годы соответственно (в долях
единиц), F – сумма вклада по истечении
четырех лет.
Если первоначальная
сумма вклада - Р, то после первого
года она возрастает и становится
.
В конце второго года эта сумма составит
.
В конце третьего года:
.
По истечении четырех лет сумма составит
Если необходимо определить средний процент дохода i, который даст сумму дохода F по истечении четырех лет, при прибавлении ежегодного накопленного прироста к сумме вклада, то это будет величина, которая определится из следующего уравнения:
Решение этого уравнения находится по формуле:
,
где (i+1) - геометрическая средняя из (1+i1 ),(1+i2),(1+i3),(1+i4)).
Средний процент
дохода по вкладу равен
,
что отличается от результата, полученного
по средней арифметической.
Общий вид формулы средней геометрической невзвешенной:
Средней геометрической взвешенной:
(5.4)
Согласно правилу мажорантности средней, расчет по средней арифметической завышает результат, чем длиннее период расчета, тем больше будет ошибка.
Пример
2. В результате инфляции за первый год
цена товара возросла в два раза к
предыдущему году, а за второй год еще в
три раза к уровню предыдущего года.
Ясно, что за два года цена возросла в 6
раз. Каков средний темп роста цены за
год? Арифметическая средняя здесь
непригодна, поскольку, если за год цена
выросла бы в (2+3)/2=2,5 раза, то за два года
цена выросла бы в 2,5 *2,5 = 6,25, а не в 6 раз.
Геометрическая средняя даст правильный
ответ:
раза.
Геометрическая средняя дает наиболее правильный по содержанию результат осреднения, если задача состоит в нахождении такого значения признака, который качественно был бы равно удален как от максимального, так и от минимального значения признака.
Пример 3.
Максимальный выигрыш в лотерее составляет
миллион рублей, а минимальный – сто
рублей. Какую величину можно считать
средней между миллионом и сотней?
Арифметическая средняя явно непригодна,
так как составляет 500050 рублей, а это,
как и миллион, крупный, а никак не средний
выигрыш. Геометрическая средняя в этом
случае дает наиболее правильный с точки
зрения экономики и логики ответ:
руб.