
- •Глава 1
- •§ 2. Электрические и магнитные поля
- •§ 3. Характеристики векторных полей
- •§ 4. Законы электромагнетизма
- •§ 5. Что это такое — «поля»?
- •§ 6. Электромагнетизм в науке и технике
- •Дифференциальное исчисление векторных полей
- •§ 2. Скалярные и векторные поля — т и h
- •§ 3. Производные полей — градиент
- •Выбрав удобную систему координат, мы можем написать
- •§ 4. Оператор
- •§ 5. Операции с
- •У равнения Максвелла
- •§ 6. Дифференциальное уравнение потока тепла
- •Е сли площадь этой плиты а, то поток тепла за единицу времени равен
- •§ 7. Вторые производные векторных полей
- •§ 8. Подвохи
- •§ 2. Поток векторного поля
- •§ 3. Поток из куба; теорема Гаусса
- •§ 4, Теплопроводность; уравнение диффузии
- •§ 5. Циркуляция векторного поля
- •§ 6. Циркуляция по квадрату; теорема Стокса
- •§ 7. Поля без роторов и поля без дивергенций
- •§ 8. Итоги
- •Магнитостатика
- •§ 2. Закон Кулона; наложение сил
- •Закон Кулона
- •§ 3. Электрический потенциал
- •Э лектростатический потенциал
- •§ 5. Поток поля е
- •§ 6. Закон Гаусса; дивергенция поля е
- •§ 7. Поле заряженного шара
- •§ 8. Линии поля; эквипотенциальные поверхности
- •§ 2. Равновесие в электростатическом поле
- •§ 3. Равновесие с проводниками
- •§ 4. Устойчивость атомов
- •§ 5. Поле заряженной прямой линии
- •§ 6. Заряженная плоскость; пара плоскостей
- •§ 7. Однородно заряженный шар; заряженная сфера
- •§ 8. Точен ли закон Кулона?
- •§ 9. Поля проводника
- •§ 10. Поле внутри полости проводника
- •Электрическое поле в разных физических условиях
- •§ 2. Электрический диполь
- •§ 3. Замечания о векторных уравнениях
- •§ 4. Диполъный потенциал как градиент
- •§ 5. Дипольное приближение для произвольного распределения
- •§ 6. Поля заряженных проводников
- •§ 7. Метод изображений
- •§ 8. Точечный заряд у проводящей плоскости
- •§ 9. Точечный заряд у проводящей сферы
- •§ 10. Конденсаторы; параллельные пластины
- •§ 11. Пробой при высоком напряжении
- •§ 12. Ионный микроскоп
- •Электрическое поле в разных физических условиях (продолжение)
- •§ 2. Двумерные поля; функции комплексного переменного
- •§ 3. Колебания плазмы
- •§ 4. Коллоидные частицы в электролите
- •§ 5. Электростатическое поле сетки
- •§ 2. Энергия конденсатора. Силы, действующие на заряженные проводники
- •§ 3. Электростатическая энергия ионного кристалла
- •§ 4. Электростатическая энергия ядра
- •§ 5. Энергия в электростатическом поле
- •§ 6. Энергия точечного заряда
- •§ 2. Электрические токи в атмосфере
- •§ 3. Происхождение токов в атмосфере
- •§ 4. Грозы
- •§ 5. Механизм распределения зарядов
- •§ 6. Молния
- •§ 2. Вектор поляризации р
- •§ 3. Поляризационные заряды
- •§ 4. Уравнения электростатики для диэлектриков
- •§ 5. Поля и силы в присутствии диэлектриков
- •§ 2. Электронная поляризация
- •§ 3. Полярные молекулы; ориентационная поляризация
- •§ 4. Электрические поля в пустотах диэлектрика
- •Следовательно, если поле внутри однородного диэлектрика мы назовем е, то можно записать
- •§ 5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
- •§ 6. Твердые диэлектрики
- •§ 7. Сегиетоэлектричество; титанат бария
- •Электростатические аналогии
- •§ 2. Поток тепла; точечный источник вблизи бесконечной плоской границы
- •§ 3. Натянутая мембрана
- •§ 4. Диффузия нейтронов; сферически-симметричный источник в однородной среде
- •§ 5. Безвихревое течение жидкости; обтекание шара
- •§ 6. Освещение; равномерное освещение плоскости
- •§ 7. «Фундаментальное единство» природы
- •Глава13
- •§ 2. Электрический ток; сохранение заряда
- •§ 3. Магнитная сила, действующая на ток
- •§ 4. Магнитное поле постоянного тока; закон Ампера
- •§ 5. Магнитное поле прямого провода и соленоида; атомные токи
- •§ 6. Относительность магнитных и электрических полей
- •§ 7. Преобразование токов и зарядов
- •§ 8. Суперпозиция; правило правой руки
- •§ 2. Векторный потенциал заданных токов
- •Это векторное уравнение, конечно, распадается на три уравнения
- •§ 3. Прямой провод
- •§ 4. Длинный соленоид
- •§ 5. Поле маленькой петли; магнитный диполь
- •§ 6. Векторный потенциал цепи
- •§ 7. Закон Био— Савара
§ 2. Скалярные и векторные поля — т и h
Мы начинаем сейчас рассмотрение абстрактного, математического подхода к теории электричества и магнетизма. Наша цель — объяснить смысл законов, написанных в гл. 1. Но для этого надо сперва объяснить новые особенные обозначения, которые мы хотим использовать. Давайте поэтому на время позабудем электромагнетизм и разберемся в математике векторных полей. Она очень важна не только в электромагнетизме, но и во многих физических обстоятельствах, подобно тому как обычное дифференциальное и интегральное исчисление важно во всех областях физики. Мы переходим к дифференциальному исчислению векторов.
Ниже перечислены некоторые сведения из алгебры векторов. Считается, что вы с ними уже знакомы
М
ы
будем также пользоваться следующими
двумя равенствами:
Фиг. 2.1. Температура Т — пример скалярного поля. С каждой точкой (х, у, z) в пространстве связывается число Т(х, у, z). Все точки на поверхности с пометкой Т=20° (изображенной в виде кривой при z=0) имеют одну и ту же температуру. Стрелки — это примеры вектора потока тепла h.
Уравнение (2.7) справедливо, конечно, только при x; y и z0.
Простейшее из физических полей — скалярное. Полем, как вы помните, называется величина, зависящая от положения в пространстве. Скалярное поле — это просто такое поле, которое в каждой точке характеризуется одним-единственным числом — скаляром. Это число, конечно, может меняться во времени, но пока мы на это не будем обращать внимания. (Речь будет идти о том, как поле выглядит в данное мгновение.) В качестве примера скалярного поля рассмотрим брусок из какого-то материала. В одних местах брусок нагрет, в других — остужен, так что его температура меняется ют точки к точке каким-то сложным образом. Температура тогда будет функцией х, у и z — положения в пространстве, измеренного в прямоугольной системе координат. Температура — это скалярное поле.
Один способ представить себе скалярное поле — это вообразить «контуры»,
т. е. мысленные поверхности, проведенные через точки с одинаковыми значениями поля, подобно горизонталям на картах, соединяющим точки на одной высоте над уровнем моря. Для температурного поля контуры носят название «изотермические поверхности», или изотермы. На фиг. 2.1 показано температурное поле и зависимость Т от х и у при z=0. Проведено несколько изотерм.
П
оля
бывают также векторными. Идея их очень
проста. В каждой точке пространства
задается вектор. Он меняется от точки
к точке. Рассмотрим в виде примера
вращающееся тело. Скорость материала
тела во всякой точке — это вектор,
который является функцией ее положения
(фиг. 2.2). Другой пример — поток тепла
в бруске из некоторого материала. Если
в одной части бруска температура выше,
а в другой — ниже, то от горячей части
к холодной будет идти поток тепла. Тепло
в разных частях бруска будет растекаться
в различных направлениях. Поток тепла
— это величина, имеющая направление;
Фиг. 2.2. Скорости атомов во вращающемся теле — пример векторного поля.
обозначим ее h; длина этого вектора пусть измеряет количество протекающего тепла. Векторы потока тепла также изображены на фиг. 2.1.
О
пределим
теперь h
более точно. Длина вектора потока тепла
в данной точке — это количество тепловой
энергии, проходящее за единицу времени
и в пересчете на единицу площади сквозь
бесконечно малый элемент поверхности,
перпендикулярный к направлению
потока. Вектор указывает направление
потока (фиг. 2.3). В буквенных обозначениях:
если J
— тепловая энергия, протекающая за
единицу времени сквозь элемент
поверхности а,
то
(2.9)
г
де
еf
—
единичный
вектор направления
потока Вектор h
можно определить и иначе — через его
компоненты. Зададим себе вопрос,
сколько тепла протекает через малую
поверхность под произвольным
углом
к направлению потока. На фиг. 2.4 мы
изобразили малую поверхность Аa2
под некоторым углом к поверхности
at,
которая перпендикулярна к потоку.
Единичный
вектор n
перпендикулярен к поверхности
Фиг. 2.3. Тепловой поток — векторное поле. Вектор h указывает направление потока. Абсолютная величина его выражает энергию, переносимую за единицу времени через элемент поверхности, ориентированный поперек потока, деленную на площадь элемента поверхности.
Фиг. 2.4. Тепловые потоки сквозь Aа2 и сквозь Aa1 одинаковы.
A
а2.
Угол
между n
и h
равен углу между поверхностями (так как
h
— нормаль к a1).
Чему теперь равен поток тепла через
а2
на
единицу площади? Потоки
сквозь а2
и а1
равны между собой, отличаются только
площади. Действительно, а1
= а2cos.
Поток тепла через а2
равен
(2.10)
Поясним это уравнение: поток тепла (в единицу времени и на единицу площади) через произвольный элемент поверхности с единичной нормалью n равен h•n. Можно еще сказать так: компонента потока тепла, перпендикулярная к элементу поверхности а2, равна h•n. Можно, если мы хотим, считать эти утверждения определением h. Сходные идеи мы применим и к другим векторным полям.