Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Richard_Fillips_Feynman_Feynmanovskie_lektsii_p...doc
Скачиваний:
13
Добавлен:
13.08.2019
Размер:
4.06 Mб
Скачать

§ 6. Энергия точечного заряда

Новое соотношение (8.35) говорит нам, что даже у отдель­ного точечного заряда q имеется какая-то электростатическая энергия. Поле в этом случае дается выражением

т ак что плотность энергии на расстоянии r от заряда равна

З а элемент объема можно принять сферический слой толщиной dr, по площади равный 4r2. Полная энергия будет

(8.36)

Верхний предел г= не приводит к затруднениям. Но раз заряд точечный, то мы намерены интегрировать до самого нуля (r=0), а это означает бесконечность в интеграле. Уравнение (8.35) утверждает, что в поле одного точечного заряда содер­жится бесконечно много энергии, хотя начали мы с представле­ния о том, что энергия имеется только между точечными заря­дами. В нашу первоначальную форму для энергии совокупно­сти точечных зарядов (8.3) мы не включили никакой энергии взаимодействия заряда с самим собой. Что же потом случилось? А то, что, переходя в уравнении (8.27) к непрерывному распределению зарядов, мы засчитывали в общую сумму взаимодей­ствие всякого бесконечно малого заряда со всеми прочими беско­нечно малыми зарядами. Тот же учет велся и в уравнении (8.35), так что, когда мы применяем его к конечному точечному заряду, мы включаем в интеграл энергию, которая понадобилась бы, чтобы накопить этот заряд из бесконечно малых частей. И действи­тельно, вы могли заметить, что результат, следующий из урав­нения (8.36), мы могли бы получить также из выражения (8.11) для энергии заряженного шара, устремив его радиус к нулю.

Мы вынуждены прийти к заключению, что представление о том, будто энергия сосредоточена в поле, не согласуется с пред­положением о существовании точечных зарядов. Один путь преодоления этой трудности — это говорить, что элементарные заряды (такие, как электрон) на самом деле вовсе не точки, а не­большие зарядовые распределения. Но можно говорить и обрат­ное: неправильность коренится в нашей теории электричества на очень малых расстояниях или в нашем представлении о со­хранении энергии в каждом месте порознь. Но каждая такая точка зрения все равно встречается с затруднениями. И их ни­когда еще не удавалось преодолеть; существуют они и по сей день. Немного позже, когда мы познакомимся с некоторыми до­полнительными представлениями, такими, как импульс электро­магнитного поля, мы более подробно поговорим об этих основ­ных трудностях в нашем понимании природы

Глава 9

ЭЛЕКТРИЧЕСТВО В АТМОСФЕРЕ

§1. Градиент электрического потенциала в атмосфере

§2. Электрические токи в атмосфере

§3. Происхождение токов в атмосфере

§4. Грозы

§5. Механизм разделения зарядов

§6. Молния

§ 1. Градиент электрического потенциала в атмосфере

В обычный день над пустынной равниной или над морем электрический потенциал по мере подъема возрастает с каждым метром примерно на 100 в. В воздухе имеется вертикальное элект­рическое поле Е величиной 100 в/м. Знак поля отвечает отрицательному заряду земной поверх­ности. Это означает, что на улице потенциал на уровне вашего носа на 200 в выше, чем потен­циал на уровне пяток! Можно, конечно, спро­сить: «Почему бы не поставить пару электродов на воздухе в метре друг от друга и не использо­вать эти 100 в для электрического освещения?» А можно и удивиться: «Если действительно между моим носом и моей пяткой имеется напря­жение 200 в, то почему же меня не ударяет то­ком, как только я выхожу на улицу?»

Сперва ответим на второй вопрос. Ваше те­ло — довольно хороший проводник. Когда вы стоите на земле, вы вместе с нею образуете эк­випотенциальную поверхность. Обычно экви­потенциальные поверхности параллельны земле (фиг. 9.1, а), но когда на земле оказываетесь вы, то они смещаются, и поле начинает выглядеть примерно так, как показано на фиг. 9.1, б. Так что разность потенциалов между вашей ма­кушкой и пятками почти равна нулю. С земли на вашу голову переходят заряды и изменяют поле вокруг вас. Часть из них разряжается ионами воздуха, но ионный ток очень мал, ведь воздух плохой проводник.

Как же измерить такое поле, раз оно иска­жается от всего, что в него попадает? Имеется несколько способов. Один способ — располо­жить изолированный проводник на какой-то высоте над землей и не трогать его до тех пор, пока он не приобретет потенциал воздуха.

Фиг. 9.1. Распределение потенциала.

а — над землей; б — около человека, стоящего на ровном месте.

Если подождать довольно долго, то даже при очень малой проводимости воз­духа заряды стекут с проводника (или натекут на него), уравняв его потенциал с потенциалом воздуха на этом уровне. Тогда мы можем опустить его к земле и измерить изменение его потенциала. Другой более быстрый способ — в качестве провод­ника взять ведерко воды, в котором имеется небольшая течь. Вытекая, вода уносит излишек заряда, и ведерко быстро приобретает потенциал воздуха. (Заряды, как вы знаете, растека­ются по поверхности, а капли воды — это уходящие «куски по­верхности».) Потенциал ведра можно измерить электрометром.

Имеется еще способ прямого измерения градиента потенциа­ла. Раз существует электрическое поле, то должен быть и поверхностный заряд на земле (0 = 0Е). Если мы поместим у по­верхности земли плоскую металлическую пластинку А и зазем­лим ее, то на ней появятся отрицательные заряды (фиг. 9.2, а). Если затем прикрыть пластинку другой заземленной проводя­щей крышкой В, то заряды появятся уже на крышке В, а на пластинке А исчезнут. Если мы измерим заряд, перетекающий с пластинки А на землю (скажем, с помощью гальванометра в цепи заземляющего провода) в тот момент, когда А закрывают крышкой, то мы найдем плотность поверхностного заряда, быв­шего на А, а значит, и электрическое поле.

Рассмотрев способы измерения электрического поля в ат­мосфере, продолжим теперь его описание. Измерения прежде всего показывают, что с увеличением высоты поле продолжает существовать, только становится слабее. На высоте примерно 50 км поле уже еле-еле заметно, так что большая часть измене­ния потенциала (интеграла от Е) приходится на малые высоты. Вся разность потенциалов между поверхностью земли и верхом атмосферы равна почти

400 000 в.

Фиг. 9.2. Заземленная металлическая пла­стинка обладает тем же поверхностным зарядом, что и земля (а); если пластинка прикрыта сверху заземленным проводником, на ней заряда нет (б).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]