Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Richard_Fillips_Feynman_Feynmanovskie_lektsii_p...doc
Скачиваний:
13
Добавлен:
13.08.2019
Размер:
4.06 Mб
Скачать

§ 3. Происхождение токов в атмосфере

Теперь нужно ответить на вопрос об источнике больших отрицательных токов, которые должны течь от «верха» к земной поверхности, чтобы поддержать ее отрицательный заряд. Где же те батареи, которые это делают? «Батарея» показана на фиг. 9.6. Это гроза или вернее молнии. Оказывается, вспышки молний не «разряжают» той разности потенциалов, о которой мы говорили (и как могло бы на первый взгляд показаться). Молнии снабжают Землю отрицательным зарядом. Если мы увидали молнию, то можно поспорить на десять против одного, что она привела на Землю большое количество отрицательных зарядов. Именно грозы заряжают Землю в среднем током в 1800 а элект­ричества, которое затем разряжается в районах с хорошей по­годой.

На Земле каждые сутки гремит около 300 гроз. Их-то и мож­но считать теми батареями, которые накачивают электричество в верхние слои атмосферы и сохраняют разность потенциалов. А теперь учтите географию — полуденные грозы в Бразилии, тропические — в Африке и т. д. Ученые сделали оценки того, сколько молний ежесекундно бьет в Землю; нужно ли говорить, что их оценки более или менее согласуются с измерениями разности потенциалов: общая степень грозовой деятельности достигает на всей Земле максимума в 19.00 по лондонскому вре­мени. Однако оценки грозовой деятельности делать очень трудно; сделаны они были только после того, как стало известно, что та­кие вариации должны существовать. Трудность заключается в том, что в океанах, да и повсюду в мире не хватает наблюдений, их мало, чтобы точно установить число гроз. Но те ученые, ко­торые думают, что они «все учли правильно», уверяют, что мак­симум деятельности приходится на 19.00 по гринвичскому сред­нему времени.

Чтобы понять, как работают эти батареи, попробуем разоб­раться в грозе поглубже. Что происходит внутри грозы? Опишем грозу так, как ее сейчас представляют. Когда мы вникаем в не­обыкновенное явление природы (а не в эти столь изящно нами разобранные идеальные сферы из идеальных проводников, по­мещенных внутри других сфер), мы открываем, что не так уж много знаем.

Фиг. 9.6. Механизм, создающий электрическое поле атмосферы.

А это все очень интересно. Гроза не оставляет че­ловека равнодушным: она пугает его или восхищает; в общем возбуждает в нем какие-то чувства. А там, где в природе появ­ляются чувства, обычно сразу всплывает и сложность природы и ее таинственность. Нет никакой возможности точно описать, как происходит гроза, мы пока мало об этом знаем. Но мы все же попробуем немножко рассказать о том, что происходит.

§ 4. Грозы

1 Прежде всего следует сказать, что обычная гроза состоит из множества «ячеек», тесно примыкающих друг к другу, но почти независимых. Поэтому достаточно проанализировать одну из них. Под «ячейкой» мы подразумеваем область (имеющую в горизонтальном направлении ограниченную протяженность), в которой происходят все основные процессы. Обычно имеется несколько ячеек, расположенных одна возле другой, а в каждой из них творится примерно одно и то же, разве что с некоторым сдвигом во времени. На фиг. 9.7 в идеализированном виде представлена ячейка в начальный период грозы. Оказывается, что в воздухе в некотором месте и при некоторых условиях (мы их вскоре опишем) существует восходящий ток, все более убы­стряющийся по мере подъема. Теплый и влажный воздух снизу подымается, остывает и конденсирует влагу.

Фие. 9.7. Грозовая ячейка в ранней стадии развития.

Фиг. 9.8. Температура ат­мосферы.

а — статическая атмосфера; b — адиабатическое охлаждение сухого воздуха; с — адиабатическое охлаж­дение влажного воздуха; а — влаж­ный воздух с какой-то примесью окружающего воздуха.

На рисунке крести­ки означают снег, а точки — дождь, но поскольку восходящий ток довольно велик, а капельки очень малы, то на этой стадии ни снег, ни дождь не выпадают. Это начальная стадия, и пока это еще не настоящая гроза, в том смысле, что внизу вообще не видно, чтобы что-нибудь происходило. По мере того как теплый воздух подымается вверх, в ячейку прибывает воздух со всех сторон (весьма важное обстоятельство, которым долго пренеб­регали). Так что подымается не только тот воздух, который был внизу, но и какое-то количество другого воздуха — с разных сторон.

Отчего воздух вот так поднимается? Как вы знаете, наверху воздух прохладнее. Солнце нагревает почву, а водяной пар в верхних слоях атмосферы излучает тепло вверх; поэтому на больших высотах воздух холодный, а внизу теплый. Вы можете сказать: «Тогда все очень просто. Теплый воздух легче холод­ного; поэтому вся эта комбинация механически неустойчива, и теплый воздух поднимается». Конечно, если температура на разных высотах разная, то воздух действительно термоди­намически неустойчив. Предоставленный самому себе надолго, весь воздух примет одинаковую температуру. Но он не предо­ставлен самому себе; весь день светит солнце. Так что проблема касается не только термодинамического, но и механического равновесия. Пусть мы начертили, как на фиг. 9.8, кривую зави­симости температуры воздуха от высоты. В обычных условиях получается убывание по кривой типа а; по мере подъема темпе­ратура падает. Как же атмосфера может быть устойчивой? По­чему бы теплому воздуху просто не подняться к холодному? Ответ состоит в том, что если бы воздух начал подниматься, то давление в нем упало бы, и, рассматривая определенную пор­цию поднимающегося воздуха, мы бы увидели, что она адиаба­тически расширяется. (Тепло не уходило бы из нее и не приходило бы, потому что из-за огромных размеров не хватило бы вре­мени для больших передач тепла.) Итак, порция воздуха при подъеме охладится. Такой адиабатический процесс привел бы к такой зависимости температура — высота, как показано кривой b на

фиг. 9.8. Любой воздух, поднимающийся снизу, оказался бы холоднее, чем то место, куда он направляется. Так что теплому воздуху снизу нет резона идти вверх; если бы он всплыл, то остыл бы и стал холоднее того воздуха, который уже там есть; он оказался бы тяжелее этого воздуха, и ему бы захотелось сра­зу обратно вниз. В хороший, ясный денек, когда влажность невелика, устанавливается какая-то быстрота падения темпера­туры с высотой, и эта быстрота, вообще говоря, ниже «макси­мального устойчивого перепада», представляемого кривой b. Воздух находится в устойчивом механическом равновесии.

Но, с другой стороны, если мы возьмем воздушную ячейку, содержащую много водяных паров, то кривая ее адиабатичес­кого охлаждения будет совсем другой. При расширении и ох­лаждении этой ячейки водяной пар начнет конденсироваться, а при конденсации выделяется тепло. Поэтому влажный воздух остывает не так сильно, как сухой. Значит, когда воздух, влаж­ность которого выше средней, начнет подниматься, его темпе­ратура будет следовать кривой с на фиг. 9.8. Слегка охлаждаясь при подъеме, он все же окажется теплее окружающего его на этой высоте воздуха. Если имеется область теплого влажного воздуха и он почему-то начинает подниматься, то он все время будет оставаться легче и теплее окружающего воздуха и по-прежнему будет всплывать, пока не достигнет огромных высот. Вот тот механизм, который заставляет воздух в грозовой ячейке подниматься.

В течение многих лет именно так объясняли грозовую ячей­ку. А затем измерения показали, что температура облака на различных уровнях над Землей не так высока, как это следует из кривой с. Причина в том, что, когда «пузырь» влажного воз­духа всплывает, он уносит с собой воздух из окружающей среды и охлаждается им. Кривая «температура — высота» похожа больше на кривую d, которая гораздо ближе к первоначальной кривой а, нежели к с.

После того как описанная конвекция началась, поперечный разрез грозовой ячейки выглядит уже так, как показано на фиг. 9.9. Это так называемая «зрелая» гроза. В ней действует очень сильная тяга вверх, достигающая на этой стадии высот в 10—15 км, а иногда и выше. Грозовой купол с происходящей в нем конденсацией громоздится надо всей облачной грядой с быст­ротой, достигающей обычно 60 км/час. По мере того как водяной пар поднимается и конденсируется, возникают крохотные ка­пельки, которые быстро охлаждаются до температуры ниже нуля. Они должны замерзнуть, но делают это не сразу — они «переохлаждаются».

Фиг. 9.9. Созревшая грозовая ячейка.

Вода, да и другие жидкости обычно легко охлаждаются ниже своей точки замерзания, не кристаллизуясь, если только вокруг нет «ядер», которые необходимы, чтобы на­чалась кристаллизация. Только если имеются мелкие крошки вещества, наподобие кристалликов NaCl, капельки воды пре­вратятся в льдинки. Тогда равновесие будет приводить к испа­рению капель и росту кристаллов льда. Итак, в какой-то мо­мент начинается внезапное исчезновение воды и быстрое обра­зование льда. Кроме того, могут происходить прямые соударения водяных капелек и льдинок — столкновения, в которых пе­реохлажденная вода, прикоснувшись к кристаллику льда, мгно­венно сама кристаллизуется. Стало быть, в какой-то момент раз­вития облака в нем происходит быстрое накопление крупных частиц льда.

И когда они станут достаточно тяжелыми, они начнут па­дать сквозь восходящий воздух, ибо они стали слишком груз­ными, чтобы тяга могла их нести. Падая, они увлекут за собой немного воздуха. Начинается противоток воздуха — вниз. И легко понять, что, как это ни странно, раз уж противоток на­чался, то прекратиться он не сможет. Воздух теперь полным хо­дом помчится вниз!

Посмотрите: кривая d на фиг. 9.8 (истинное распределение температур по высоте облака) не так крута, как кривая с (от­носящаяся к влажному воздуху). Значит, когда начнет падать влажный воздух, его температура будет повышаться по кривой, соответствующей кривизне линии с, т. е. при достаточно сильном падении окажется ниже температуры окружающего воздуха (как это видно из кривой е). И в момент, когда это случится, он окажется плотнее окружающего воздуха, падение станет неот­вратимым.

Но вы скажете: «Уж не вечное ли это движение? Сперва го­ворилось, что воздух должен подниматься, а когда вы его под­няли, то одинаково убедительно принимаетесь доказывать, что ему положено падать». Нет, это не вечное движение. Когда по­ложение неустойчиво и теплый воздух вынужден подниматься, тогда, естественно, что-то должно его заместить. Не менее верно и то, что спускающийся холодный воздух был бы в состоянии энергетически заместить теплый воздух. Но поймите, что то, что спустилось вниз,— это уже не тот воздух, который был вна­чале. Давние рассуждения, в которых шла речь об изолирован­ном облаке, сперва подымавшемся, а затем спускающемся, содержали в себе какую-то загадку. Нужен был дождь, чтобы обеспечить спуск, а этот способ был мало правдоподобен. Но как только вы поняли, что к восходящему потоку воздуха приме­шан воздух, бывший вначале на той высоте, откуда началась тяга, термодинамические соображения покажут вам, что падение холодного воздуха, первоначально плававшего на больших высотах, тоже возможно. Это и объясняет картину активной грозы, представленную схематически на фиг. 9.9.

Фиг. 9.10, Поздняя фаза грозовой ячейки.

Когда воздух доходит донизу, из нижней части тучи начи­нает идти дождь. Вдобавок, достигнув земной поверхности, от­носительно холодный воздух растекается во все стороны. Значит, перед самой грозой начинается холодный ветер, предупреждаю­щий нас о предстоящей буре. Во время самой бури наблюдаются резкие и внезапные порывы ветра, облака клубятся и т. д. Но в основном сперва существует ток, текущий вверх, потом про­тивоток вниз — картина, вообще говоря, очень сложная.

В то же мгновение, когда начинаются осадки, возникает и противоток. И в тот же самый момент обнаруживаются электри­ческие явления. Но прежде чем описать молнию, мы закончим рассказом о том, что творится в грозовой ячейке через полчаса или, скажем, через час. Она выглядит так, как показано на фиг. 9.10. Тяга вверх прекратилась — больше нет теплого воз­духа, и поддерживать ее нечем. Какое-то время еще продолжа­ются осадки, последние капельки воды падают на землю, все становится спокойнее, хотя часть льдинок еще осталась в воздухе. На больших высотах ветры дуют в разные стороны, поэтому верх грозовой тучи обычно начинает принимать вид наковальни. Ячейке пришел конец.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]