Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Richard_Fillips_Feynman_Feynmanovskie_lektsii_p...doc
Скачиваний:
13
Добавлен:
13.08.2019
Размер:
4.06 Mб
Скачать

Электрическое поле в разных физических условиях

§1.Уравнения электростатиче­ского потенциала

§2.Электрический диполь

§3.3амечания о векторных уравнениях

§4.Дипольный потенциал как градиент

§5.Дипольное приближение для произвольного распределения

§6.Поля заряженных проводников

§7. Метод изображений

§8.Точечный заряд у проводящей плоскости

§9.Точечный заряд у проводящей сферы

§10.Конденеаторы; параллельные пластины

§11.Пробой при высоком напряжении

§12.Ионный микроскоп

Повторить: гл. 23 (вып. 2) «Резонанс»

§ 1. Уравнения электростатического потенциала

В этой главе мы расскажем о поведении электрического поля в тех или иных обстоятель­ствах. Вы познакомитесь с тем, как ведет себя электрическое поле, и с некоторыми математи­ческими методами, используемыми для опреде­ления поля.

Отметим для начала, что математически вся задача состоит в решении двух уравнений — максвелловских уравнений электростатики:

(6.1)

(6.2)

Фактически оба эти уравнения можно объ­единить в одно. Из второго уравнения сразу же следует, что поле может считаться гра­диентом некоего скаляра (см. гл. 3, § 7):

(6.3)

Электрическое поле каждого частного ви­да можно, если нужно, полностью описать с помощью потенциала поля . Дифферен­циальное уравнение, которому должно удо­влетворять , получится, если (6.3) подста­вить в (6.1):

(6.4)

Расходимость градиента —это то же, что 2, действующее на :

(6.5)

т ак что уравнение (6.4) мы запишем в виде

(6.6)

Оператор 2 называется лапласианом, а уравнение (6.6) — уравнением Пуассона. Весь предмет электростатики с мате­матической точки зрения заключается просто в изучении реше­ний одного-единственного уравнения (6.6). Как только из (6.6) вы найдете , поле Е немедленно получается из (6.3).

О братимся сперва к особому классу задач, в которых  задано как функция х, у, z. Такая задача почти тривиальна, потому что решать уравнение (6.6) в общем случае мы уже умеем. Мы ведь показали, что если  в каждой точке известно, то потенциал в точке (1) равен

(6.7)

г де (2) — плотность заряда, dV2 — элемент объема в точке (2), а r12 — расстояние между точками (1) и (2). Решение диф­ференциального уравнения (6.6) свелось к интегрированию по пространству. Решение (6.7) нужно отметить особо, потому что в физике часто встречаются ситуации, приводящие к уравнениям, которые выглядят так:

и (6.7) является прототипом решения любой такой задачи.

Проблема расчета электростатического поля, таким образом, решается совершенно честно, если только положения всех за­рядов известны. Давайте посмотрим на нескольких примерах, как действует эта формула.

§ 2. Электрический диполь

С начала возьмем два точечных заряда +q и -q, разделенных промежутком d. Проведем ось z через заряды, а начало коор­динат поместим посредине между ними (фиг. 6.1). Тогда по фор­муле (4.24) потенциал системы двух зарядов дается выраже­нием

Мы не собираемся выписывать формулу для электрического поля, но всегда при желании можем это сделать, раз мы знаем потенциал. Так что задача двух зарядов решена.

Существует важный частный случай этой задачи, когда за­ряды расположены близко друг к другу, иными словами, когда нас интересует поле на таких расстояниях от зарядов, что по сравнению с ними промежуток между зарядами кажется незна­чительным. Такую тесную пару зарядов называют диполем. Диполи встречаются очень часто.

Фиг. 6.1. Диполь: два заряда +q и -q, удаленные друг от друга на расстояние d.

«Дипольную» антенну можно часто приближенно рассматривать как два за­ряда, разделенные неболь­шим расстоянием (если нас не интересует поле у са­мой антенны). (Обычно ин­терес представляют антенны с движущимися зарядами; уравнения статики тогда не­применимы, но для некоторых целей они все же представ­ляют весьма сносное приближение.)

Важнее, пожалуй, диполи атомные. Если в каком-то веще­стве есть электрическое поле, то электроны и протоны испыты­вают влияние противоположных сил и смещаются друг относи­тельно друга. Вы помните, что в проводнике некоторые электроны сдвигаются к поверхности, так что внутреннее поле обращает­ся в нуль. В изоляторе электроны не могут сильно разой­тись; им мешает притяжение ядра. И все же они как-то смеща­ются. Так что хотя атом (или молекула) и остается нейтральным, во внешнем электрическом поле все же возникает еле заметное разделение положительных и отрицательных зарядов, и атом становится микроскопическим диполем. Если нам нужно знать поле этих атомных диполей поблизости от предмета обычных размеров, то мы имеем дело с расстояниями, большими по срав­нению с промежутками между зарядами.

В некоторых молекулах из-за самой их формы заряды не­сколько разделены даже в отсутствие внешних полей. В моле­куле воды, например, имеется отрицательный заряд на атоме кислорода и положительный заряд на обоих атомах водорода, которые расположены несимметрично (фиг. 6.2). Хоть заряд всей молекулы равен нулю, все же имеется распределение за­ряда с небольшим преобладанием отрицательного заряда на од­ной стороне и положительного на другой. Это расположение, конечно, не такое простое, как у двух точечных зарядов, но если смотреть на него издалека, оно действует как диполь. Как мы увидим чуть позже, поле на больших расстояниях нечувстви­тельно к мелким деталям расположения.

Фиг. 6.2. Молекула воды Н2O.

В зглянем теперь на поле двух зарядов противоположных знаков, расстояние d между которыми мало. Если d станет ну­лем, два заряда сойдутся в одном месте, два потенциала сокра­тятся, поле исчезнет. Но если они не совсем слились, то можно получить хорошее приближение к потенциалу, разложив сла­гаемые в (6.8) в ряд по степеням малой величины d (по формуле бинома Ньютона). Оставляя только первые степени d, мы напи­шем

У добно обозначить

Тогда

и

Разлагая в биномиальный ряд [1 — (zd/r2)]-1/2 и отбрасывая члены с высшими степенями d, мы получаем

П одобно этому,

Вычитая эти два члена, имеем для потенциала

(6.9)

Потенциал, а значит, и поле, являющееся его производной, пропорциональны qd произведению заряда на расстояния меж­ду зарядами.

Фиг. 6.3. Векторные обозначения, для диполя.

Это произведение называется диполъным моментом пары зарядов, и мы обозначим его символом р (не путайте с импульсом!):

(6.10)

У равнение (6.9) можно также записать в виде

(6.11)

так как z/r=cos, где  — угол между осью диполя и радиус-вектором к точке (х, у, z) (см. фиг. 6.1). Потенциал диполя убы­вает как 1/r2 при фиксированном направлении (а у точечного заряда он убывает как 1/r). Электрическое поле Е диполя по­этому убывает как 1/r3.

Мы можем записать нашу формулу и в векторном виде, если определим р., как вектор, абсолютная величина которого равна р, а направление выбрано вдоль оси диполя от q- к q+. Тогда

(6.12)

г де еr— единичный радиальный вектор (фиг. 6.3). Кроме того, точку (x, y, z) можно обозначить буквой r. Итак, Дипольный потенциал:

(6.13)

Эта формула справедлива для диполя произвольной ориентации и положения, если r — вектор, направленный от диполя к ин­тересующей нас точке.

Е сли нас интересует электрическое поле диполя, то нужно взять градиент . Например, z-компонента поля есть -d/dz. Для диполя, ориентированного вдоль оси z, мы можем исполь­зовать (6.9):

Фиг. 6.4. Электрическое поле диполя.

и ли

(6.14)

А х- и y-компоненты равны

Из этих двух компонент можно составить компоненту, пер­пендикулярную к оси z, которая называется поперечной компонентой E:

или

(6.15)

Поперечная компонента Е лежит в плоскости ху и направ­лена прямо от оси диполя. Полное поле, конечно, равно

Поле диполя меняется обратно пропорционально кубу рас­стояния от диполя. На оси при 6 =0 оно вдвое сильнее, чем при 9 =90°. При обоих этих углах электрическое поле обладает только z-компонентой. Знаки ее при 2=0 и при z=90° проти­воположны (фиг. 6.4).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]