Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Richard_Fillips_Feynman_Feynmanovskie_lektsii_p...doc
Скачиваний:
13
Добавлен:
13.08.2019
Размер:
4.06 Mб
Скачать

§ 5. Энергия в электростатическом поле

Рассмотрим теперь другие способы подсчета электростатичес­кой энергии. Все они могут быть получены из основного соот­ношения (8.3) суммированием (по всем парам) взаимных энергий каждой пары зарядов. Прежде всего, мы хотим написать выраже­ние для энергии распределения зарядов. Как обычно, считаем, что каждый элемент объема dV содержит в себе элемент заряда pdV. Тогда уравнение (8.3) запишется так:

(8.27)

О братите внимание на появление множителя 1/2. Он возник из-за того, что в двойном интеграле по dV1 и по dV2 каждая пара элементов заряда считалась дважды. (Не существует удобной записи интеграла, в которой каждая пара считалась бы только по одному разу.) Затем заметьте, что интеграл по dV2 в (8.27) — это просто потенциал в точке (1), т. е.

т ак что (8.27) можно записать в виде

А так как точка (2) при этом выпала, то можно написать просто

(8.28)

Э то уравнение можно истолковать так. Потенциальная энер­гия заряда dV равна произведению этого заряда на потенциал в той же точке. Вся энергия поэтому равна интегралу от dV. Но, кроме этого, есть множитель 1/2. Он все еще необходим, по­тому что энергии считаются дважды. Взаимная энергия двух зарядов равна заряду одного из них на потенциал другого в этой точке. Или заряду другого на потенциал от первого во второй точке. Так что для двух точечных зарядов можно написать

или

О братите внимание, что это же можно написать и так:

(8.29)

Интеграл в (8.28) отвечает сложению обоих слагаемых в скобках выражения (8.29). Вот зачем нужен множитель 1/2.

Интересен и такой вопрос: где размещается электростатичес­кая энергия? Правда, можно в ответ спросить: а не все ли равно?

Есть ли смысл у такого вопроса? Если имеется пара взаимодей­ствующих зарядов, то их сочетание обладает некоторой энер­гией. Неужели нужно непременно уточнять, что энергия со­средоточена на этом заряде, или на том, или на обоих сразу, или между ними? Все эти вопросы лишены смысла, потому что мы знаем, что на самом деле сохраняется только полная, суммар­ная энергия. Представление о том, что энергия сосредоточена где-то, не так уж необходимо.

Ну а все же предположим, что в том, что энергия всегда со­средоточена в каком-то определенном месте (подобно тепловой энергии), действительно смысл есть. Тогда мы могли бы наш принцип сохранения энергии расширить, соединив его с идеей о том, что если в каком-то объеме энергия меняется, то это изме­нение можно учесть, наблюдая приток или отток энергии из объема. Вы ведь понимаете, что наше первоначальное утвержде­ние о сохранении энергии по-прежнему будет превосходно вы­полняться, если какая-то энергия пропадет в одном месте и возникнет где-то далеко в другом, а в промежутке между этими местами ничего не случится (ничего — это значит не случится каких-либо явлений особого рода). Поэтому мы можем перейти теперь к расширению наших идей о сохранении энергии. Назо­вем это расширение принципом локального (местного) сохране­ния энергии. Такой принцип провозглашал бы, что энергия внутри любого данного объема изменяется лишь на количество, равное притоку (или убыли) энергии в объем (или из него). И действительно, такое локальное сохранение энергии вполне возможно. Если это так, то в нашем распоряжении будет куда более детальный закон, чем простое утверждение о сохранении полной энергии. И, как оказывается, в природе энергия действи­тельно сохраняется локально, в каждом месте порознь, и можно написать формулы, показывающие, где энергия сосредоточена и как она перетекает с места на место.

Имеется и физический резон в требовании, чтобы мы были в состоянии указать, где именно заключена энергия. По теории тяготения всякая масса есть источник гравитационного притя­жения. А по закону Е=тс2 мы также знаем, что масса и энергия вполне равноценны друг другу. Стало быть, всякая энергия яв­ляется источником силы тяготения. И если б мы не могли узнать, где находится энергия, мы бы не могли знать, где расположена масса. Мы не могли бы сказать, где размещаются источники поля тяготения. И теория тяготения стала бы неполной.

Конечно, если мы ограничимся электростатикой, то способа узнать, где сосредоточена энергия, у нас нет. Но полная система максвелловских уравнений электродинамики снабдит нас не­сравненно более полной информацией (хотя и тогда, строго говоря, ответ до конца определенным не станет). Подробнее мы этот вопрос рассмотрим позже. А сейчас приведем лишь результат, касающийся частного случая электростатики

Фиг. 8.8. Каждый элемент объема dV=dxdydz в электриче­ском поле содержит в себе энер­гию (0/2) E2dV.

Э нергия заключена в том пространстве, где имеется электрическое поле. Это, ви­димо, вполне разумно, потому что известно, что, ускоряясь, заряды излучают электрические поля. И когда свет или радио­волны распространяются от точки к точке, они переносят с со­бой свою энергию. Но в этих волнах нет зарядов. Так что энер­гию хотелось бы размещать там, где есть электромагнитное поле, а не там, где есть заряды, создающие это поле. Таким об­разом, мы описываем энергию не на языке зарядов, а на языке создаваемых ими полей. Действительно, мы можем показать, что уравнение (8.28) численно совпадает с

(8.30)

Э ту формулу можно толковать, говоря, что в том месте простран­ства, где присутствует электрическое поле, сосредоточена и энергия; плотность ее (количество энергии в единице объема) равна

(8.31)

Эта идея иллюстрируется фиг. 8.8.

Ч тобы показать, что уравнение (8.30) согласуется с нашими законами электростатики, начнем с того, что введем в уравне­ние (8.28) соотношение между  и , полученное в гл. 6:

Получим

(8.32)

Расписав покомпонентно подынтегральное выражение, мы

у видим, что

А наш интеграл энергий тогда равен

С помощью теоремы Гаусса второй интеграл можно превратить в интеграл по поверхности:

(8.34)

Этот интеграл мы подсчитаем для того случая, когда поверх­ность простирается до бесконечности (так что интеграл по объе­му обращается в интеграл по всему пространству), а все заряды расположены на конечном расстоянии друг от друга. Проще всего это сделать, взяв поверхность сферы огромного радиуса с центром в начале координат. Мы знаем, что вдали от всех заря­дов  изменяется как 1/R, a  как 1/R2. (И даже быстрее, если суммарный заряд нуль.) Площадь же поверхности большой сферы растет только как R2, так что интеграл по поверхности убывает по мере возрастания радиуса сферы как

( 1/R)(1/R2)/R2= (1/R). Итак, если наше интегрирование захватит собой все пространство (R ), то поверхностный интеграл обратится в нуль, и мы обнаружим

(8.35)

Мы видим, что существует возможность представить энергию произвольного распределения зарядов в виде интеграла от плотности энергии, сосредоточенной в поле.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]