
- •Глава 1
- •§ 2. Электрические и магнитные поля
- •§ 3. Характеристики векторных полей
- •§ 4. Законы электромагнетизма
- •§ 5. Что это такое — «поля»?
- •§ 6. Электромагнетизм в науке и технике
- •Дифференциальное исчисление векторных полей
- •§ 2. Скалярные и векторные поля — т и h
- •§ 3. Производные полей — градиент
- •Выбрав удобную систему координат, мы можем написать
- •§ 4. Оператор
- •§ 5. Операции с
- •У равнения Максвелла
- •§ 6. Дифференциальное уравнение потока тепла
- •Е сли площадь этой плиты а, то поток тепла за единицу времени равен
- •§ 7. Вторые производные векторных полей
- •§ 8. Подвохи
- •§ 2. Поток векторного поля
- •§ 3. Поток из куба; теорема Гаусса
- •§ 4, Теплопроводность; уравнение диффузии
- •§ 5. Циркуляция векторного поля
- •§ 6. Циркуляция по квадрату; теорема Стокса
- •§ 7. Поля без роторов и поля без дивергенций
- •§ 8. Итоги
- •Магнитостатика
- •§ 2. Закон Кулона; наложение сил
- •Закон Кулона
- •§ 3. Электрический потенциал
- •Э лектростатический потенциал
- •§ 5. Поток поля е
- •§ 6. Закон Гаусса; дивергенция поля е
- •§ 7. Поле заряженного шара
- •§ 8. Линии поля; эквипотенциальные поверхности
- •§ 2. Равновесие в электростатическом поле
- •§ 3. Равновесие с проводниками
- •§ 4. Устойчивость атомов
- •§ 5. Поле заряженной прямой линии
- •§ 6. Заряженная плоскость; пара плоскостей
- •§ 7. Однородно заряженный шар; заряженная сфера
- •§ 8. Точен ли закон Кулона?
- •§ 9. Поля проводника
- •§ 10. Поле внутри полости проводника
- •Электрическое поле в разных физических условиях
- •§ 2. Электрический диполь
- •§ 3. Замечания о векторных уравнениях
- •§ 4. Диполъный потенциал как градиент
- •§ 5. Дипольное приближение для произвольного распределения
- •§ 6. Поля заряженных проводников
- •§ 7. Метод изображений
- •§ 8. Точечный заряд у проводящей плоскости
- •§ 9. Точечный заряд у проводящей сферы
- •§ 10. Конденсаторы; параллельные пластины
- •§ 11. Пробой при высоком напряжении
- •§ 12. Ионный микроскоп
- •Электрическое поле в разных физических условиях (продолжение)
- •§ 2. Двумерные поля; функции комплексного переменного
- •§ 3. Колебания плазмы
- •§ 4. Коллоидные частицы в электролите
- •§ 5. Электростатическое поле сетки
- •§ 2. Энергия конденсатора. Силы, действующие на заряженные проводники
- •§ 3. Электростатическая энергия ионного кристалла
- •§ 4. Электростатическая энергия ядра
- •§ 5. Энергия в электростатическом поле
- •§ 6. Энергия точечного заряда
- •§ 2. Электрические токи в атмосфере
- •§ 3. Происхождение токов в атмосфере
- •§ 4. Грозы
- •§ 5. Механизм распределения зарядов
- •§ 6. Молния
- •§ 2. Вектор поляризации р
- •§ 3. Поляризационные заряды
- •§ 4. Уравнения электростатики для диэлектриков
- •§ 5. Поля и силы в присутствии диэлектриков
- •§ 2. Электронная поляризация
- •§ 3. Полярные молекулы; ориентационная поляризация
- •§ 4. Электрические поля в пустотах диэлектрика
- •Следовательно, если поле внутри однородного диэлектрика мы назовем е, то можно записать
- •§ 5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
- •§ 6. Твердые диэлектрики
- •§ 7. Сегиетоэлектричество; титанат бария
- •Электростатические аналогии
- •§ 2. Поток тепла; точечный источник вблизи бесконечной плоской границы
- •§ 3. Натянутая мембрана
- •§ 4. Диффузия нейтронов; сферически-симметричный источник в однородной среде
- •§ 5. Безвихревое течение жидкости; обтекание шара
- •§ 6. Освещение; равномерное освещение плоскости
- •§ 7. «Фундаментальное единство» природы
- •Глава13
- •§ 2. Электрический ток; сохранение заряда
- •§ 3. Магнитная сила, действующая на ток
- •§ 4. Магнитное поле постоянного тока; закон Ампера
- •§ 5. Магнитное поле прямого провода и соленоида; атомные токи
- •§ 6. Относительность магнитных и электрических полей
- •§ 7. Преобразование токов и зарядов
- •§ 8. Суперпозиция; правило правой руки
- •§ 2. Векторный потенциал заданных токов
- •Это векторное уравнение, конечно, распадается на три уравнения
- •§ 3. Прямой провод
- •§ 4. Длинный соленоид
- •§ 5. Поле маленькой петли; магнитный диполь
- •§ 6. Векторный потенциал цепи
- •§ 7. Закон Био— Савара
§ 3. Колебания плазмы
Займемся теперь такими физическими задачами, в которых поле создается не закрепленными зарядами и не зарядами на проводящих поверхностях, а сочетанием обоих факторов. Иными словами, полем управляют одновременно две системы уравнений: 1) уравнения электростатики, связывающие электрическое поле с распределением зарядов; 2) уравнения из другой области физики, определяющие положение или движения зарядов в поле.
Сперва мы разберем один динамический пример. В нем движение зарядов контролируется законами Ньютона. Простой пример такого положения вещей наблюдается в плазме, в ионизованном газе, состоящем из ионов и свободных электронов распределенных в какой-то области пространства. Ионосфера (верхний слой атмосферы) служит примером такой плазмы. Ультрафиолетовые лучи Солнца отрывают от молекул воздуха электроны и создают свободные электроны и ионы. В плазме положительные ионы намного тяжелее электронов, так что можно пренебречь движением в ней ионов но сравнению с движением электронов.
Пусть n0 будет плотностью электронов в невозмущенном равновесном состоянии. Такой же должна быть и плотность положительных ионов, потому что в невозмущенном состоянии плазма нейтральна. Теперь допустим, что электроны каким-то образом выведены из равновесия. Что тогда получится? Если плотность электронов в какой-то области возросла, они начнут отталкиваться и стремиться вернуться в прежнее положение равновесия. Двигаясь к своим первоначальным положениям, они наберут кинетическую энергию и вместо того, чтобы замереть в равновесной конфигурации, проскочат мимо. Начнутся колебания. Нечто похожее наблюдается в звуковых волнах, но там возвращающей силой было давление газа. В плазме возвращающая сила — это действующее на электроны электрическое притяжение.
Чтобы упростить рассуждения, мы будем заниматься только одномерным движением электронов — скажем, в направлении x;. Предположим, что электроны, первоначально находившиеся в точке х, к моменту t сместились из положения равновесия на расстояние s (x, t). Раз они сместились, то плотность их, вообще говоря, изменилась. Это изменение подсчитать легко. Если посмотреть на фиг. 7.6, то видно, что электроны, вначале находившиеся между плоскостями а и b, сдвинулись и теперь находятся между плоскостями а' и b'. Количество электронов между а и b прежде было пропорционально n0х; теперь то же их количество находится в промежутке шириной x+s.
Фиг. 7.6. Движение волны в плазме.
Электроны от плоскости а сдвигаются к а', а от b —к b'.
Плотность т
еперь
стала
(7.16)
Если изменение плотности мало, то можно написать [заменяя с помощью биномиального разложения (1+)-1 на (1-)]
(7.17)
Ч
то
касается ионов, то предположим, что они
не сдвинулись заметно с места (инерция-то
у них куда больше), так что плотность
их осталась прежней, n0.
Заряд каждого
электрона -qe
, и
средняя плотность заряда в любой точке
равна
или
(7.18)
(здесь s/x записано через дифференциалы).
Далее, уравнения Максвелла связывают с плотностью зарядов электрическое поле. В частности,
(7.19)
Если задача действительно одномерна (и никаких полей, кроме вызываемых смещением электронов, нет), то у электрического поля Е есть одна-единственная составляющая Ех. Уравнение (7.19) вместе с (7.18) приведет к
(7.20)
И
нтегрируя
(7.20), получаем
(7.21)
Постоянная интегрирования К равна нулю, потому что Ех=0 при s=0.
С
ила,
действующая на смещенный электрон,
равна
(7.22)
т. е. возвращающая сила пропорциональна смещению s электрона. Это приведет к гармоническим колебаниям электронов. Уравнение движения смещенного электрона имеет вид
(7.23)
Отсюда следует, что s меняется по гармоническому закону. Во времени s меняется как cos t или, если использовать экспоненту (см. вып. 3), как
(7.24)
Частота колебаний р определяется из (7.23):
(7.25)
Это число, характеризующее плазму, называют собственной частотой колебаний плазмы, или плазменной частотой.
Оперируя с электронами, многие предпочитают получать ответы в единицах e2, определяемых как
(7.26)
При этом условии (7.25) превращается в
(7.27)
В таком виде эту формулу можно встретить во многих книгах.
Итак, мы обнаружили, что возмущения плазмы приводят к свободным колебаниям электронов вблизи положения равновесия с собственной частотой р, пропорциональной корню квадратному из плотности электронов. Плазменные электроны ведут себя как резонансная система, подобная описанным в вып. 2, гл. 23.
Этот собственный резонанс плазмы приводит к интересным эффектам. Например, при прохождении радиоволн сквозь ионосферу обнаруживается, что они могут пройти только в том случае, если их частота выше плазменной частоты. А иначе они отражаются обратно. Для связи с искусственным спутником мы используем высокие частоты. Если же мы хотим связаться с радиостанцией, расположенной где-то за горизонтом, то необходимы частоты меньшие, чем плазменная частота, иначе сигнал не отразится обратно к Земле.
Другой интересный пример колебаний плазмы наблюдается в металлах. В них содержится плазма из положительных ионов и свободных электронов. Плотность n0 там очень высока, значит, велика и р. Но колебания электронов все же можно обнаружить. Ведь, согласно квантовой механике, гармонический осциллятор с собственной частотой р обладает уровнями энергии, отличающимися друг от друга на величину hр. Значит, если, скажем, обстреливать электронами алюминиевую фольгу и очень точно измерять их энергию по ту сторону фольги, то можно ожидать, что временами электроны будут из-за колебаний плазмы терять как раз энергию hp. Так это и происходит. Впервые это явление наблюдалось экспериментально в 1936 г. Электроны с энергиями от нескольких сот до нескольких тысяч электронвольт, рассеиваясь от тонкой металлической фольги или проходя сквозь нее, теряли энергию порциями. Эффект оставался непонятым до 1953 г., пока Бом и Пайнс не показали, что все это можно объяснить квантовым возбуждением плазмы в металле.