
- •Глава 1
- •§ 2. Электрические и магнитные поля
- •§ 3. Характеристики векторных полей
- •§ 4. Законы электромагнетизма
- •§ 5. Что это такое — «поля»?
- •§ 6. Электромагнетизм в науке и технике
- •Дифференциальное исчисление векторных полей
- •§ 2. Скалярные и векторные поля — т и h
- •§ 3. Производные полей — градиент
- •Выбрав удобную систему координат, мы можем написать
- •§ 4. Оператор
- •§ 5. Операции с
- •У равнения Максвелла
- •§ 6. Дифференциальное уравнение потока тепла
- •Е сли площадь этой плиты а, то поток тепла за единицу времени равен
- •§ 7. Вторые производные векторных полей
- •§ 8. Подвохи
- •§ 2. Поток векторного поля
- •§ 3. Поток из куба; теорема Гаусса
- •§ 4, Теплопроводность; уравнение диффузии
- •§ 5. Циркуляция векторного поля
- •§ 6. Циркуляция по квадрату; теорема Стокса
- •§ 7. Поля без роторов и поля без дивергенций
- •§ 8. Итоги
- •Магнитостатика
- •§ 2. Закон Кулона; наложение сил
- •Закон Кулона
- •§ 3. Электрический потенциал
- •Э лектростатический потенциал
- •§ 5. Поток поля е
- •§ 6. Закон Гаусса; дивергенция поля е
- •§ 7. Поле заряженного шара
- •§ 8. Линии поля; эквипотенциальные поверхности
- •§ 2. Равновесие в электростатическом поле
- •§ 3. Равновесие с проводниками
- •§ 4. Устойчивость атомов
- •§ 5. Поле заряженной прямой линии
- •§ 6. Заряженная плоскость; пара плоскостей
- •§ 7. Однородно заряженный шар; заряженная сфера
- •§ 8. Точен ли закон Кулона?
- •§ 9. Поля проводника
- •§ 10. Поле внутри полости проводника
- •Электрическое поле в разных физических условиях
- •§ 2. Электрический диполь
- •§ 3. Замечания о векторных уравнениях
- •§ 4. Диполъный потенциал как градиент
- •§ 5. Дипольное приближение для произвольного распределения
- •§ 6. Поля заряженных проводников
- •§ 7. Метод изображений
- •§ 8. Точечный заряд у проводящей плоскости
- •§ 9. Точечный заряд у проводящей сферы
- •§ 10. Конденсаторы; параллельные пластины
- •§ 11. Пробой при высоком напряжении
- •§ 12. Ионный микроскоп
- •Электрическое поле в разных физических условиях (продолжение)
- •§ 2. Двумерные поля; функции комплексного переменного
- •§ 3. Колебания плазмы
- •§ 4. Коллоидные частицы в электролите
- •§ 5. Электростатическое поле сетки
- •§ 2. Энергия конденсатора. Силы, действующие на заряженные проводники
- •§ 3. Электростатическая энергия ионного кристалла
- •§ 4. Электростатическая энергия ядра
- •§ 5. Энергия в электростатическом поле
- •§ 6. Энергия точечного заряда
- •§ 2. Электрические токи в атмосфере
- •§ 3. Происхождение токов в атмосфере
- •§ 4. Грозы
- •§ 5. Механизм распределения зарядов
- •§ 6. Молния
- •§ 2. Вектор поляризации р
- •§ 3. Поляризационные заряды
- •§ 4. Уравнения электростатики для диэлектриков
- •§ 5. Поля и силы в присутствии диэлектриков
- •§ 2. Электронная поляризация
- •§ 3. Полярные молекулы; ориентационная поляризация
- •§ 4. Электрические поля в пустотах диэлектрика
- •Следовательно, если поле внутри однородного диэлектрика мы назовем е, то можно записать
- •§ 5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
- •§ 6. Твердые диэлектрики
- •§ 7. Сегиетоэлектричество; титанат бария
- •Электростатические аналогии
- •§ 2. Поток тепла; точечный источник вблизи бесконечной плоской границы
- •§ 3. Натянутая мембрана
- •§ 4. Диффузия нейтронов; сферически-симметричный источник в однородной среде
- •§ 5. Безвихревое течение жидкости; обтекание шара
- •§ 6. Освещение; равномерное освещение плоскости
- •§ 7. «Фундаментальное единство» природы
- •Глава13
- •§ 2. Электрический ток; сохранение заряда
- •§ 3. Магнитная сила, действующая на ток
- •§ 4. Магнитное поле постоянного тока; закон Ампера
- •§ 5. Магнитное поле прямого провода и соленоида; атомные токи
- •§ 6. Относительность магнитных и электрических полей
- •§ 7. Преобразование токов и зарядов
- •§ 8. Суперпозиция; правило правой руки
- •§ 2. Векторный потенциал заданных токов
- •Это векторное уравнение, конечно, распадается на три уравнения
- •§ 3. Прямой провод
- •§ 4. Длинный соленоид
- •§ 5. Поле маленькой петли; магнитный диполь
- •§ 6. Векторный потенциал цепи
- •§ 7. Закон Био— Савара
Электрическое поле в разных физических условиях (продолжение)
§1.Методы определения электростатического поля
§2.Двумерные поля; функции комплексного переменного
§З.Колебания плазмы
§4.Коллоидные частицы в электролите
§5.Электростатическое поле сетки
§ 1. Методы определения электростатического поля
В этой главе мы продолжим рассмотрение характеристик электрических полей в различных условиях. Сперва мы опишем один из наиболее разработанных методов расчета полей в присутствии проводников. Мы не рассчитываем, конечно, что эти усовершенствованные методы будут вами тотчас усвоены. Но вам должно быть интересно получить какое-то представление о характере задач, которые удается решать при помощи техники, излагаемой в специальных, более глубоких курсах. Затем мы приведем два примера, в которых нет ни заранее фиксированных распределений зарядов, ни растекания зарядов по проводнику, а вместо этого распределение определяют другие физические законы.
Как мы выяснили в гл. 6, задача об электростатическом поле решается очень просто, когда распределение зарядов оговорено заранее; остается только взять интеграл. Когда же имеются проводники, то возникают усложнения, потому что распределение зарядов на проводниках с самого начала неизвестно; заряды вынуждены сами распределять себя по поверхности проводника так, чтобы весь проводник приобрел одинаковый потенциал. Эти задачи так просто не решаются.
Мы рассмотрели обходный путь решения таких задач, при котором сначала отыскивают эквипотенциальные поверхности некоторого заданного распределения зарядов и потом одну из них заменяют проводящей поверхностью. Таким манером можно составить каталог частных решений для проводников любой формы, плоской, сферической и т. п. Использование изображений, описанное в гл. 6, является примером косвенного способа решения. Другой такой способ мы опишем в этой главе.
Если наша задача не относится к тем, для которых годен обходный путь, приходится решать ее в лоб. Математической основой такого способа решения задач является решение уравнения Лапласа
(7.1)
при условии, что потенциал на некоторой границе (поверхностях проводников) равен условленной константе. Задачи, связанные с решением дифференциального уравнения поля, удовлетворяющего некоторым граничным условиям, называются задачами о граничных значениях. Они явились предметом интенсивного математического изучения. Для сложных проводников общих аналитических методов решения нет. Даже такая простая задача, как поле заряженного металлического цилиндра с запаянными торцами — консервной банки, представляет огромные математические трудности. Ее можно решить лишь приближенно, численным методом. Единственный общий метод решения — численный.
Имеется несколько задач, в которых уравнение (7.1) все же решается. К примеру, задача о заряженном проводнике, имеющем форму эллипсоида вращения, может быть решена с помощью некоторых специальных функций. Решение для тонкого диска тогда можно получить, бесконечно сплющив эллипсоид. А бесконечно вытянув тот же эллипсоид, получим поле заряженной иглы. Но надо подчеркнуть, что единственный прямой способ, применимый всюду и всегда, это путь численных расчетов.
Задачу о граничных значениях можно также решать на ее физическом аналоге. Уравнение Лапласа возникает во многих физических ситуациях: при изучении установившегося потока тепла, безвихревого течения жидкости, отклонений упругой мембраны. Часто можно соорудить физическую модель, являющуюся аналогом решаемой нами электрической задачи. Измерив в модели величину, аналогичную интересующей нас, можно узнать решение задачи. Примером аналоговой техники является применение электролитической ванны для решения двумерных задач электростатики. Решение удается потому, что дифференциальное уравнение для потенциала в однородной проводящей среде такое же, как и в вакууме.
И
меется
много физических задач, в которых
физические поля в каком-то одном
направлении не изменяются или этим
изменением можно пренебречь по
сравнению с изменениями в двух других
направлениях. Такие задачи называют
двумерными; поле зависит только от
двух координат. Скажем, если вдоль оси
z
протянуть
длинную заряженную проволоку, то в
точках неподалеку от нее электрическое
поле зависит от x
и y,
а не от z;
задача двумерная. Так как в двумерных
задачах d/dz=0,
то
уравнение для
в свободном пространстве имеет вид
(7.2)
Поскольку двумерное уравнение сравнительно простое, то существует широкий класс условий, в которых оно решается аналитически. Действительно, существует могучая математическая техника, связанная с теоремами теории функций комплексного переменного. К изложению ее мы сейчас и перейдем.