
- •Глава 1
- •§ 2. Электрические и магнитные поля
- •§ 3. Характеристики векторных полей
- •§ 4. Законы электромагнетизма
- •§ 5. Что это такое — «поля»?
- •§ 6. Электромагнетизм в науке и технике
- •Дифференциальное исчисление векторных полей
- •§ 2. Скалярные и векторные поля — т и h
- •§ 3. Производные полей — градиент
- •Выбрав удобную систему координат, мы можем написать
- •§ 4. Оператор
- •§ 5. Операции с
- •У равнения Максвелла
- •§ 6. Дифференциальное уравнение потока тепла
- •Е сли площадь этой плиты а, то поток тепла за единицу времени равен
- •§ 7. Вторые производные векторных полей
- •§ 8. Подвохи
- •§ 2. Поток векторного поля
- •§ 3. Поток из куба; теорема Гаусса
- •§ 4, Теплопроводность; уравнение диффузии
- •§ 5. Циркуляция векторного поля
- •§ 6. Циркуляция по квадрату; теорема Стокса
- •§ 7. Поля без роторов и поля без дивергенций
- •§ 8. Итоги
- •Магнитостатика
- •§ 2. Закон Кулона; наложение сил
- •Закон Кулона
- •§ 3. Электрический потенциал
- •Э лектростатический потенциал
- •§ 5. Поток поля е
- •§ 6. Закон Гаусса; дивергенция поля е
- •§ 7. Поле заряженного шара
- •§ 8. Линии поля; эквипотенциальные поверхности
- •§ 2. Равновесие в электростатическом поле
- •§ 3. Равновесие с проводниками
- •§ 4. Устойчивость атомов
- •§ 5. Поле заряженной прямой линии
- •§ 6. Заряженная плоскость; пара плоскостей
- •§ 7. Однородно заряженный шар; заряженная сфера
- •§ 8. Точен ли закон Кулона?
- •§ 9. Поля проводника
- •§ 10. Поле внутри полости проводника
- •Электрическое поле в разных физических условиях
- •§ 2. Электрический диполь
- •§ 3. Замечания о векторных уравнениях
- •§ 4. Диполъный потенциал как градиент
- •§ 5. Дипольное приближение для произвольного распределения
- •§ 6. Поля заряженных проводников
- •§ 7. Метод изображений
- •§ 8. Точечный заряд у проводящей плоскости
- •§ 9. Точечный заряд у проводящей сферы
- •§ 10. Конденсаторы; параллельные пластины
- •§ 11. Пробой при высоком напряжении
- •§ 12. Ионный микроскоп
- •Электрическое поле в разных физических условиях (продолжение)
- •§ 2. Двумерные поля; функции комплексного переменного
- •§ 3. Колебания плазмы
- •§ 4. Коллоидные частицы в электролите
- •§ 5. Электростатическое поле сетки
- •§ 2. Энергия конденсатора. Силы, действующие на заряженные проводники
- •§ 3. Электростатическая энергия ионного кристалла
- •§ 4. Электростатическая энергия ядра
- •§ 5. Энергия в электростатическом поле
- •§ 6. Энергия точечного заряда
- •§ 2. Электрические токи в атмосфере
- •§ 3. Происхождение токов в атмосфере
- •§ 4. Грозы
- •§ 5. Механизм распределения зарядов
- •§ 6. Молния
- •§ 2. Вектор поляризации р
- •§ 3. Поляризационные заряды
- •§ 4. Уравнения электростатики для диэлектриков
- •§ 5. Поля и силы в присутствии диэлектриков
- •§ 2. Электронная поляризация
- •§ 3. Полярные молекулы; ориентационная поляризация
- •§ 4. Электрические поля в пустотах диэлектрика
- •Следовательно, если поле внутри однородного диэлектрика мы назовем е, то можно записать
- •§ 5. Диэлектрическая проницаемость жидкостей; формула Клаузиуса — Моссотти
- •§ 6. Твердые диэлектрики
- •§ 7. Сегиетоэлектричество; титанат бария
- •Электростатические аналогии
- •§ 2. Поток тепла; точечный источник вблизи бесконечной плоской границы
- •§ 3. Натянутая мембрана
- •§ 4. Диффузия нейтронов; сферически-симметричный источник в однородной среде
- •§ 5. Безвихревое течение жидкости; обтекание шара
- •§ 6. Освещение; равномерное освещение плоскости
- •§ 7. «Фундаментальное единство» природы
- •Глава13
- •§ 2. Электрический ток; сохранение заряда
- •§ 3. Магнитная сила, действующая на ток
- •§ 4. Магнитное поле постоянного тока; закон Ампера
- •§ 5. Магнитное поле прямого провода и соленоида; атомные токи
- •§ 6. Относительность магнитных и электрических полей
- •§ 7. Преобразование токов и зарядов
- •§ 8. Суперпозиция; правило правой руки
- •§ 2. Векторный потенциал заданных токов
- •Это векторное уравнение, конечно, распадается на три уравнения
- •§ 3. Прямой провод
- •§ 4. Длинный соленоид
- •§ 5. Поле маленькой петли; магнитный диполь
- •§ 6. Векторный потенциал цепи
- •§ 7. Закон Био— Савара
§ 6. Циркуляция по квадрату; теорема Стокса
Как нам найти циркуляцию по каждому квадратику? Все зависит от того, как квадрат ориентирован в пространстве. Если ориентация его подобрана удачно (к примеру, он расположен в одной из координатных плоскостей), то расчет сделать легко. Так как пока мы не делали никаких предположений об ориентации осей координат, мы вправе выбрать их так, чтобы тот квадратик, на котором мы сосредоточили свое внимание, оказался в плоскости ху (фиг. 3.10). Если результат расчета будет выражен в векторной записи, то можно говорить, что он не зависит от специальной ориентации плоскости.
Фиг. 3.10. Вычисление циркуляции вектора С по маленькому квадратику.
Мы хотим теперь найти циркуляцию поля С по нашему квадратику. Криволинейное интегрирование легко проделать, если квадратик сделать таким маленьким, чтобы вектор С на протяжении одной стороны квадрата менялся очень мало. (Это предположение выполняется тем лучше, чем меньше квадратик, так что на самом деле речь идет о бесконечно малых квадратиках.) Отправившись от точки (х, у) — в левом нижнем углу фигуры,— мы обойдем весь квадрат в направлении, указанном стрелками. Вдоль первой стороны, отмеченной цифрой 1, касательная составляющая равна Сх(1), а расстояние равно х. Первая часть интеграла равна Cx(1) х, Вдоль второй стороны получится Су(2) y. Вдоль третьей мы получим -Сx(3) х, а вдоль четвертой -Cy(4) y. Знаки минус стоят потому, что нас интересует касательная составляющая в направлении обхода. Весь криволинейный интеграл тогда равен
(
3.31)
Посмотрим теперь на первый и третий
члены. В сумме они дают
(3.32)
В
ам
может показаться, что в принятом
приближении эта разность равна нулю.
Но это только в первом приближении. Мы
можем быть более точными и учесть
скорость изменения Сх
,
тогда
можно написать
(3.33)
В
следующем приближении пойдут члены с
(y)2,
но ввиду того, что нас интересует в
конечном счете только предел при y0,
то этими членами можно пренебречь.
Подставляя (3.33) в (3.32), мы получаем
(3.34)
П
роизводную
при нашей точности можно брать в точке
(х,
у). Подобным
же образом оставшиеся два члена можно
написать в виде
(3.35)
и
циркуляция по квадрату тогда равна
(3.36)
Интересно, что в скобках получилась как раз z-компонента ротора С. Множитель xy— это площадь нашего квадрата. Так что циркуляцию (3.36) можно записать как
(XС)zа.
Но z-компонента это на самом деле компонента, нормальная к элементу поверхности.
Фиг. 3.11. Циркуляция вектора С по Г равна поверхностному интегралу от нормальной компоненты вектора XС.
Поэтому циркуляцию вокруг квадратика можно задать и в инвариантной векторной записи:
(3.37)
В результате имеем: циркуляция произвольного вектора С по бесконечно малому квадрату равна произведению составляющей ротора С, нормальной к поверхности, на площадь квадрата.
Циркуляция по произвольному контуру Г легко теперь может быть увязана с ротором векторного поля. Натянем на контур любую подходящую поверхность S (как на фиг. 3.11) и сложим между собой циркуляции по всем бесконечно малым квадратикам на этой поверхности. Сумма может быть записана в виде интеграла. В итоге получится очень полезная теорема, называемая теоремой Стокса [по имени физика Стокса].
Т
ЕОРЕМА
СТОКСА
(3.38)
где S — произвольная поверхность, ограниченная контуром Г. Теперь мы должны ввести соглашение о знаках. На приведенной ранее фиг. 3.10 ось z показывает на вас, если система координат «обычная», т. е. «правая». Когда в криволинейном интеграле мы брали «положительное» направление обхода, то циркуляция получилась равной z-компоненте вектора XC. Обойди мы контур в другую сторону, мы бы получили противоположный знак. Как вообще узнавать, какое направление надо выбирать для положительного направления «нормальной» компоненты вектора XC? «Положительную» нормаль надо всегда связывать с направлением так, как это сделано было на фиг. 3.10. Общий случай показан на фиг. 3.11.
Для запоминания годится «правило правой руки». Если вы расположите пальцы вашей правой руки вдоль контура Г, чтобы кончики пальцев показывали положительное направление обхода ds, то ваш большой палец укажет направление положительной нормали к поверхности S.