Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Линейная ТАУ.doc
Скачиваний:
26
Добавлен:
04.05.2019
Размер:
2.34 Mб
Скачать

2.1. Дифференциальные уравнения

Наиболее часто в качестве математической модели объекта управления используются обыкновенные дифференциальные уравнения, которые могут быть записаны в различной форме.

Линейные многоканальные объекты обычно описывают системой дифференциальных уравнений первого порядка, представленной в векторно-матричном виде:

.

(2.1)

Здесь - вектор состояния, n - порядок объекта; - вектор управляющих воздействий, A - квадратная матрица коэффициентов; B - прямоугольная матрица коэффициентов. Уравнения (2.1) называются дифференциальными уравнениями состояния.

Выходные переменные объекта изменяются в соответствии с уравнением выхода

y = Cx

(2.2)

где - вектор выхода; C - прямоугольная матрица коэффициентов.

Уравнения (2.1) и (2.2) описывают линейный стационарный объект. Если его параметры меняются с течением времени, то такой объект называется нестационарным, а математическая модель имеет вид (2.1)-(2.2), где элементы матриц являются функциями времени: A=A(t); B=B(t); C=C(t).

Для описания одноканального объекта обычно используется скалярное дифференциальное уравнение:

,

(2.3)

которое также может быть приведено к описанию типа (2.1) и (2.2) после соответствующего выбора линейно-независимых переменных состояния. Их число всегда равно порядку объекта (n), а и .

Наиболее простое (каноническое) описание получается в случае, когда в качестве переменных состояния выбирается выходная переменная y и ее производные до (n-1) включительно

При этом вместо (2.3) имеем систему уравнений в виде нормальной формы Коши,

(2.4)

которая соответствует векторно-матричным уравнениям (2.1) и (2.2). Здесь матрицы A, B и C имеют вид:

причем

Переход к описанию (2.1) - (2.2) не является однозначным: для одного объекта можно выбрать множество переменных состояния; важно, чтобы они были линейно - независимыми. При этом будут получаться различные матрицы объекта A, B и C.

Пример 2.1.

Записать уравнения состояния одноканального объекта, модель которого имеет вид

1) Если в качестве переменных состояния выбрать выходную величину и ее производную, , то получим канонические уравнения состояния и матрицы объекта типа (2.4):

2) Выбирая переменные состояния следующим образом: получим новые уравнения состояния и матрицы объекта:

В общем случае одноканальный объект может описываться дифференциальным уравнением вида:

(2.5)

от которого также можно перейти к векторно-матричным уравнениям типа (2.1) - (2.2). Рассмотрим этот переход на примере.

Пример 2.2.

Записать уравнения состояния объекта с математической моделью вида

Выбираем переменные состояния и получим следующие уравнения состояния и матрицы объекта

Таким образом, в качестве динамической характеристики линейных объектов управления используются дифференциальные уравнения, которые могут быть представлены в форме (2.1) - (2.2), (2.3), (2.4) или (2.5).