
- •Список основных сокращений
- •Часть 1. Статическая биохимия тема 1. Строение, свойства, биологическая роль углеводов и липидов
- •1.1.1. Основные понятия биохимии
- •1.1.2. Основные разделы биохимии
- •1.1.3. Основные закономерности строения и метаболизма макромолекул в живых системах
- •1.1.4. Превращение энергии в живых клетках
- •1.1.5. Химические реакции в живых клетках
- •1.1.6. Строение, свойства, биологическая роль углеводов
- •1.1.6.1. Биологические функции углеводов
- •Слайд: Биологические функции углеводов
- •1.1.6.2. Моносахариды
- •Стереоизомерия моносахаридов
- •1.1.6.3. Олигосахариды
- •1.1.6.4. Полисахариды (гликаны)
- •1.1.7.1. Строение, свойства, биологическая роль липидов
- •1.1.7.2. Биологическая роль липидов
- •1.1.7.3. Нейтральные липиды (ацилглицеролы)
- •1.1.7.4. Жирные кислоты
- •1.1.7.5. Нейтральные диольные липиды
- •1.1.7.6. Нейтральные плазмалогены
- •1.1.7.11. Стероиды
- •1.1.7.12. Терпены
- •Тема 2. Строение, свойства, биологическая роль белков
- •2.1. Состав белков
- •2.2. Аминокислоты
- •2.3. Стереохимия аминокислот
- •2.4. Связи, стабилизирующие белковую молекулу
- •Пептидные связи
- •Часть молекулы полипептида Ионная связь
- •Дисульфидная связь
- •Водородная связь
- •2.5. Конформации белков
- •1.2.5.1. Первичная структура
- •1.2.5.2. Вторичная структура
- •1.2.5.3. Третичная структура
- •1.2.5.4. Четвертичная структура
- •1.2.5.5. Биологические функции белков
- •1.2.5.6. Классификация белков
- •1.2.5.7. Простые белки
- •1.2.5.8. Сложные белки
- •Тема 3. Строение, сворйства, биологическая роль нуклеотидов
- •1.3.1. Строение нуклеотидов. Компоненты нуклеотидов
- •1.3.2. Образование нуклеотида
- •1.3.3. Строение динуклеотидов и полинуклеотидов
- •Фрагмент полинуклеотида
- •1.3.3.1. Структура днк
- •1.3.3.2. Структура рнк
- •Тема 4. Витамины, ферменты
- •1.4.1. Витамины
- •1.4.1.2. Водорастворимые витамины витамин в1 (тиамин)
- •Витамин в2 (рибофлавин)
- •Витамин рр (в5) (никотинамид)
- •Витамин в6 (пиридоксин)
- •Витамин р (витамин проницаемости)
- •Витамин в12 (антианемический витамин, кобаламин)
- •Витамин с
- •Пантотеновая кислота (витамин в3)
- •Пара-аминобензойная кислота
- •Фолиевая кислота (витамин Вс)
- •1.4.1.2. Жирорастворимые витамины витамин а (ретинол)
- •Витамин d (антирахитический витамин)
- •Витамин е (витамин размножения, токоферол)
- •Витамин к (антигеморрагический витамин)
- •1.4.2. Ферменты
- •1.4.2.1. Химическая кинетика
- •1.4.2.2. Кинетика ферментативных реакций
- •1.4.2.3. Структура ферментов
- •1.4.2.4. Регуляция активности ферментов
- •1.4.2.5. Классификация ферментов
- •1. Оксидоредуктазы (окислительно-восстановительные реакции)
- •2. Трансферазы (перенос функциональных групп)
- •3. Гидролазы (реакции гидролиза)
- •1.5.1. Механизм действия гормонов
- •1.5.2. Гормоны гипоталамуса
- •Гормоны гипофиза
- •1.5.3. Гормоны поджелудочной железы
- •1.5.4. Гормоны щитовидной железы
- •1.5.5. Гормоны коры надпочечников
- •1.5.6. Гормоны мозгового вещества надпочечников
- •1.5.7. Гормоны половых желез
- •1.5.8. Гормоны паращитовидной железы
- •1.5.9. Гормоны тимуса (вилочковая железа)
- •Часть 2. Динамическая биохимия
- •Тема 6. Переваривание углеводов в пищеварительном тракте. Гликолиз. Окислительное декарбоксилирование пирувата
- •2.6.1. Метаболические пути и обмен энергии
- •А → б → в → г → д, где а - исходное вещество (предшественник), б, в, г – интермедиаты, д – конечный продукт.
- •2.6.2. Обмен углеводов
- •2.6.2.1. Переваривание углеводов
- •2.6.2.2. Всасывание моносахаридов
- •2.6.2.3. Транспорт углеводов в клетки
- •2.6.3. Гликолиз
- •Аденозинтрифосфорная кислота
- •Брожение и дыхание
- •Стадии гликолиза
- •Ферментативные реакции первой стадии гликолиза
- •1. Фосфорилирование d-глюкозы за счет атф
- •Полный баланс гликолиза
- •2.6.4. Гликогенолиз
- •Тема 7. Аэробный метаболизм углеводов
- •2.7.1. Энергетика брожения и дыхания
- •2.7.2. Общая схема дыхания
- •2.7.3. Окисление пирувата до ацетил-КоА
- •2.7.4. Цикл трикарбоновых кислот (цикл Кребса)
- •Цитрат-синтаза
- •Аконитазное равновесие
- •Изоцитратадегидрогеназа
- •Окисление -кетоглутарата до сукцината
- •Сукцинатдегидрогеназа
- •Фумараза
- •Окисление малата до оксалоацетата
- •Баланс одного оборота цикла Кребса
- •2.7.5. Перенос электронов и окислительное фосфорилирование
- •2.7.6. Путь переноса электронов – дыхательная цепь
- •Баланс энергии
- •2.7.7. Хемиосмотическая гипотеза Митчелла
- •Тема 8. Липидный обмен
- •2.8.1. Превращение липидов в процессе пищеварения
- •2.8.2. Всасывание продуктов переваривания липидов и ресинтез липидов в кишечной стенке
- •2.8.3. Внутриклеточные процессов расщепления и синтеза липидов различных классов
- •2.8.4. Обмен триглицеридов и холестерина в тканях
- •2.8.5. Интеграция и регуляция метаболизма липидов
- •2.8.6. Нарушение обмена липидов при ожирении
- •Тема 9. Белковый обмен
- •2.9.1. Общие представления об обмене белков
- •2.9.2. Пищеварение белков
- •2.9.3. Синтез белков
- •2.9.4. Внутриклеточный распад белков
- •2.9.5. Пути выведения аммиака из организма
- •Тема 10. Интеграция клеточного обмена
- •2.10.1. Взаимосвязь процессов обмена углеводов, липидов, белков
- •2.10.2. Внутриклеточная регуляция обмена веществ
- •2.10.3. Нервная и гормональная регуляция обмена веществ
- •Часть 3. Спортивная биохимия тема 11. Биохимия мышечного сокращения
- •3.11.1. Типы мышечных волокон
- •3.11.2. Ультраструктура мышечного волокна
- •Тема 12. Энергетическое обеспечение мышечной деятельности
- •3.12.1. Креатинфосфокиназный механизм ресинтеза атф
- •3.12.2. Гликолитический механизм ресинтеза атф
- •3.12.3. Миокиназный механизм ресинтеза атф
- •3.12.4. Аэробный механизм ресинтеза атф
- •3.12.5. Соотношение анаэробных и аэробных механизмов ресинтеза атф при мышечной нагрузке
- •3.12.6. Биохимические факторы спортивной работоспособности
- •Тема 13. Биохимические изменения в организме при работе различного характера. Биохимические изменения при утомлении.
- •3.13.1. Общие изменения в организме при физической нагрузке
- •3.13.2. Биохимические изменения в мышцах при физической нагрузке
- •3.13.3. Систематизация упражнений по характеру биохимических изменений при физической работе
- •3.13.4. Биохимические изменения при утомлении
- •Тема 14. Биохимические превращения в период восстановления после мышечной работы
- •3.14.1. Срочное и отставленное восстановление
- •Тема 15. Закономерности биохимической адаптации под влиянием систематической тренировки
- •Сверхотягощение
- •Специфичность
- •3.15.3. Принцип обратимости действия
- •3.15.4. Принцип положительного взаимодействия
- •3.15.5. Принцип цикличности
- •Тема 16. Биохимический контроль при занятиях физической культурой
- •3.16.1. Биохимический контроль развития систем энергообеспечения организма и уровнем тренированности, утомления и восстановления организма
- •3.16.2. Контроль за применением допинга в спорте
- •Тема 17. Биохимические основы силы, быстроты и выносливости
- •3.17.1. Морфологические и биохимические основы скоростно-силовых качеств
- •3.17.2. Биохимические основы методов скоростно-силовой подготовки спортсменов
- •3.17.3. Биохимические основы выносливости
- •3.17.4. Методы тренировки, способствующие развитию выносливости
- •Тема 18. Биохимическое обоснование методики занятий физической культурой и спортом с лицами разного возраста. Биохимические основы рационального питания при занятиях физической культурой.
- •3.18.1. Биохимическое обоснование методики занятий физической культурой и спортом с лицами разного возраста
- •3.18.2. Биохимические основы рационального питания спортсменов
1.1.2. Основные разделы биохимии
Биохимию принято подразделять на статическую, динамическую и функциональную. К функциональной биохимии относятся те области биохимических знаний, где изучаются особенности протекания биохимических процессов при различных функциональных состояниях организма (медицинская биохимия, биохимия спорта и др.). Биохимия спорта исследует закономерности биохимических превращений в организме человека в процессе занятий физическими упражнениями. Положение биохимии спорта среди научных дисциплин, объединенных в комплекс спортивных наук, представлено на схеме (рис. 1).
Основные проблемы спортивной биохимии:
Механизмы преобразования энергии в организме человека при мышечной деятельности.
Регуляция синтеза белка при мышечной нагрузке.
Механизмы нервной и гормональной регуляции обмена веществ при мышечной деятельности.
Закономерности биохимической адаптации к систематической мышечной деятельности.
Прикладные биохимические исследования в спорте тесно связаны с решением научно-методических проблем подготовки спортсменов высокой квалификации.
Наиболее важные задачи спортивной биохимии:
Выявление и оценка биохимических факторов, лимитирующих уровень спортивных достижений.
Изучение биохимических сдвигов у спортсменов в процессе тренировочных занятий.
Изучение биохимических характеристик восстановительных процессов после соревновательных и тренировочных нагрузок.
Установление биохимических критериев, оценивающих эффективность тренировочного процесса, а также целесообразность применения специальных средств, направленных на повышение работоспособности и ускорение восстановительных процессов.
Решение этих задач позволит повысить эффективность управления подготовкой спортсменов и добиться более высокого уровня спортивных достижений.
Рис. 1. Взаимосвязь спортивной биохимии с другими науками
1.1.3. Основные закономерности строения и метаболизма макромолекул в живых системах
По своему химическому составу организмы сильно отличаются от окружающей среды, в которой они живут. Большинство химических компонентов живых организмов представляют собой органические соединения, в которых углерод находится в относительно восстановленной или гидрированной форме. Многие биомолекулы содержат азот. В неживой материи углерод и азот распространены гораздо меньше. Они встречаются в атмосфере и в земной коре только в виде простых неорганических соединений.
Органические соединения, входящие в состав живого, разнообразны, а большинство из них крайне сложны. Каждый вид организмов имеет свой собственный набор молекул белков и нуклеиновых кислот. Поскольку известно свыше 1200000 видов живых организмов различной степени сложности можно рассчитать, что все виды вместе взятые содержат приблизительно от 1010 до 1012 различных белков и около 1010 нуклеиновых кислот. Но как это ни парадоксально, все огромное разнообразие органических молекул в живых организмах, в конечном счете, сводится к поразительно простой картине. Макромолекулы в клетке состоят из большого числа простых и сравнительно небольших молекул, которые служат строительными блоками, связываясь друг с другом в длинные цепи. Например, молекулы белков построены из 100 или более аминокислотных остатков. В белках обнаружено всего 20 различных аминокислот, однако благодаря тому, что они соединены друг с другом в разной последовательности, они образуют огромное множество всевозможных белков. Нуклеиновые кислоты, подобно белкам, имеют длинные полимерные цепи и состоят всего из 8 строительных блоков - мононуклеотидов. При этом 20 аминокислот и 8 мононуклеотидов - одни и те же у всех организмов.
Немногочисленные простые молекулы, играющие роль строительных блоков макромолекул, выполняют в клетках еще несколько функций. Аминокислоты служат не только строительными блоками белковых молекул, но также предшественниками гормонов, алкалоидов, порфиринов, пигментов и многих других биомолекул, а мононуклеотиды используются не только как строительные блоки нуклеиновых кислот, но также аккумулируют энергию. Поэтому представляется вполне вероятным, что биомолекулы, играющие роль строительных блоков, отбирались в процессе эволюции по своей способности выполнять не одну, а несколько функций. Живые организмы не содержат не функционирующих соединений, хотя существуют биомолекулы, функции которых пока неясны.
При всей сложности молекулярной организации клетки для нее характерна изначальная простота: тысячи ее различных макромолекул построены из немногочисленных типов простых молекул - строительных блоков. Поскольку биомолекулы, являющиеся строительными блоками, идентичны у всех видов организмов, можно сделать вывод, что все живые организмы имеют общего предка. Под функциональным многообразием молекул, являющихся строительными блоками, кроется принцип молекулярной экономии.