- •355 Електростатика Розділ 4. Електродинаміка медико-біологічних систем
- •Електростатика
- •4.1.1. Основні характеристики електричного поля
- •4.1.2. Електричний диполь
- •4.1.3. Діелектрики, поляризація діелектриків
- •4.1.4. Діелектричні властивості біологічних тканин
- •4.1.5. П’єзоелектричний ефект
- •Постійний струм. Електропровідність біологічних тканин
- •4.2.1. Характеристики електричного струму
- •4.2.2. Електропровідність біологічних тканин і рідин
- •4.2.3. Дія електричного струму на живий організм
- •Магнітне поле
- •4.3.1. Магнітне поле у вакуумі і його характеристики
- •4.3.2. Закон Біо–Савара–Лапласа
- •4.3.3. Дія магнітного поля на рухомий електричний заряд. Сила Ампера і сила Лоренца
- •4.3.4. Магнітні властивості речовини
- •4.3.5. Магнітні властивості тканин організму, фізичні основи магнітобіології
- •Електромагнітні коливання
- •4.4.1. Рівняння електричних коливань
- •4.4.2. Вимушені електричні коливання, змінний струм
- •4.4.3. Повний опір кола змінного струму (імпеданс). Закон Ома для кола змінного струму
- •4.4.4. Імпеданс біологічних тканин
- •Електромагнітні хвилі
- •4.5.1. Струм зміщення
- •4.5.2. Рівняння Максвелла
- •4.5.3. Плоскі електромагнітні хвилі. Вектор Умова-Пойнтінга
- •4.5.4. Шкала електромагнітних хвиль
- •Семінар “Методика одержання, реєстрації та передачі медико-біологічної інформації”
- •Контрольні питання для підготовки до семінару
- •Додаткова література
- •Типові задачі з еталонами розв’язків
- •Теоретичні питання, що розглядаються на семінарі
- •Додаткові теоретичні відомості
- •4.6.1. Прилади для вимірювання електричних параметрів та їх класифікація
- •Точність вимірювальних приладів
- •4.6.2. Вимірювання сили струму, напруги, ерс, опору в електричному колі
- •Вимірювання опорів
- •Вимірювання невідомої ерс компенсаційним методом. Дільники напруги
- •4.6.3. Осцилографи, генератори, підсилювачі, датчики
- •Підсилення і генерація електричних сигналів
- •Електроди та датчики медико-біологічної інформації
- •Структурна схема кола для одерження, передачі і реєстрації медико-біологічної інформації
- •Завдання для перевірки кінцевого рівня знань
- •Хід роботи
- •Контрольні питання
- •Порядок виконання роботи
- •Контрольні питання
- •Хід роботи
- •Контрольні питання
- •Хід роботи
- •Обробка результатів вимірювань
- •Контрольні питання
4.5.2. Рівняння Максвелла
Дж. К. Максвелл записав свої геніальні рівняння в 1865 р. Рівняння Максвелла – це фундаментальні рівняння електродинаміки, які описують електромагнітні явища в будь-якому середовищі. Вони узагальнюють експериментальні і теоретичні праці фізиків першої половини XІX ст. і, насамперед, дослідження М. Фарадея. Основні закони електродинаміки Максвелл сформулював у вигляді чотирьох рівнянь, які подамо в інтегральній формі, як в найбільш простій і наочній.
Перше рівняння Максвелла спирається на закон Біо–Савара–Лапласа та поняття струму зміщення. Виділимо в провіднику, в якому існує змінний струм, довільну площадку S, обмежену контуром l. Тоді
, (4.88)
де Hl – проекція вектора напруженості магнітного поля на напрям дотичної до контура l у даній точці, jn – нормальна до вибраної площадки складова густини струму провідності, Dn – нормальна до площадки складова вектора електричної індукції. Тут вжита частинна похідна D/t, щоб врахувати факт залежності D як від часу, так і від просторової координати. Струм зміщення виникає лише тоді, коли D змінюється з часом. Це рівняння показує, що магнітне поле вихрове і що воно виникає незалежно від наявності постійних магнітів. Виникнення магнітного поля зумовлене двома факторами: рухом електричних зарядів (струм провідності) і зміною в часі електричного поля (струм зміщення).
Друге рівняння відображає закон електромагнітної індукції Фарадея:
і = .
ЕРС, як відомо, дорівнює роботі сторонніх сил по переміщенню одиничного заряду, тобто , тому матимемо
= – Ф/t = – dS, (4.89)
де El – проекція вектора напруженості електричного поля на напрям дотичної до контура у даній точці, Bn – нормальна до поверхні складова вектора магнітної індукції. З цього рівняння видно, що крім електростатичного поля в природі існує електричне поле, джерелом якого є змінне магнітне поле. Всяка зміна електричного поля зумовлює появу змінного магнітного поля, лінії напруженості якого замкнені і охоплюють лінії електричного поля (перше рівняння); всяка зміна магнітного поля зумовлює появу змінного електричного поля, лінії напруженості якого замкнуті й охоплюють лінії магнітного поля (друге рівняння).
Третє рівняння Максвелла показує, що джерелом електричного поля є електричні заряди:
= q.
Ліва частина цього рівняння – потік вектора індукції електричного поля через замкнену поверхню площею S.
Четверте рівняння відображає факт відсутності магнітних зарядів. Повний потік вектора магнітної індукції В через замкнену поверхню площею S дорівнює нулю:
= 0.
Наведені рівняння Максвелла не враховують будову речовини і взаємодію електромагнітного поля з частинками речовини. Вплив середовища на електромагнітне поле задається через його електропровідність, а також діелектричну і магнітну проникності. Тому до рівнянь Максвелла слід додати ще три рівняння, які називаються матеріальними:
,
,
j = E.
Рівняння Максвелла описують величезне коло явищ (електродинаміка, оптика, електротехніка, радіотехніка, астрофізика, фізика плазми тощo). Теорія Максвелла не тільки пояснила вже відомі факти, а й передбачила нові і важливі явища. Абсолютно новим у цій теорії було припущення Максвелла про магнітні поля струмів зміщення. На основі цього припущення Максвелл предбачив існування електромагнітних хвиль, тобто змінного електромагнітного поля, яке поширюється в просторі з певною швидкістю. Теоретичне дослідження властивостей електромагнітних хвиль привело згодом Максвелла до створення електромагнітної теорії світла. Пізніше експериментально вдалося отримати електромагнітні хвилі і провести досліди, які блискуче підтвердили електромагнітну теорію світла, а з нею і всю теорію Максвелла.